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Abstract 

Alternatively, to other studies that used parametric 
distributions (e.g. Gamma) in the estimation of the 
Standardized Precipitation Index (SPI), this study aims to 
apply a nonparametric method based on Kernel Density 
Estimator (KDE) for calculating the SPI. Results of the 
proposed method were compared with the ones from the 
most widely used parametric distribution, using a long 
dataset of monthly precipitation of four meteorological 
stations in Iran (including Bushehr, Mashhad, Tehran and 
Esfahan) over a period of 107 water years (1895-2002). The 
capability of KDE-based SPI was compared with the 
Gamma-based SPI at four-time scales of 3, 6, 9 and 12 
months. The frequencies of the drought classes of SPI were 
calculated and compared with corresponding expected 
frequencies. The results revealed that the KDE is more 
consistent with the expected values of the SPI drought/wet 
classes frequencies (especially in the extreme classes) at all 
stations as well as at the four-time scales, compared to the 
Gamma distribution. The greatest deviation from the 
expected frequencies for KDE and Gamma distribution 
were about 10% and 150%, respectively. This study 
proposes a new analytical approach in modeling SPI that 
provides more accurate results pertaining frequency of 
occurrences of extreme drought events. The output of the 
study can be used in many fields (e.g. tourism, agriculture, 
insurance, etc.) that are influenced by severe droughts.  

Keywords: SPI, Gamma Distributions, Kernel Density 
Estimation, extreme drought events. 

1. Introduction 

The presence of an appropriate and accurate drought index 
to determine dry spells using a quantitative analysis is 
necessary and helpful in many disciplines (Efthimiou and 
Karavitis, 2016; Silva, 2003). Index-based assessment has 
been recommended for effective management of natural 
phenomena (Anđelković et al., 2016; Olya and Alipour, 
2015ab). Depending on the variety of the available data, 
different indices such as Palmer drought severity index 
(Palmer, 1965), crop moisture index (Palmer, 1968), 
surface water supply index (Shafer and Dezman, 1982), 
drought index (Bhalme and Mooley, 1980) standardized 

precipitation index (McKee et al., 1993), reconnaissance 
drought index (Tsakiris and Vangelis, 2005), stream-flow 
drought index (Nalbantis and Tsakiris, 2009) joint deficit 
index (Kao and Govindaraju, 2010) standardized 
precipitation evapotranspiration index (Vicente-Serrano et 
al., 2010) have been used for quantitative assessment of 
the drought phenomena in different spatial and temporal 
scales. Various drought studies have shown that the 
contribution of precipitation in these indices is more 
important compared to other climatic variables, because 
precipitation is able to justify over 80% of the variability in 
these indices (Keyantash and Dracup, 2003; Moorhead et 
al., 2015). 

The Standardized Precipitation Index (SPI) is considered as 
an appropriate index due to its simple calculation, 
availability of its input data across the world, flexibility of 
time scale, and comparability of droughts by time and 
space (Hayes et al., 1999; Guttman, 1999; Mishra and 
Singh, 2010; Moreira, 2015; Mundetia and Sharma, 2015; 
Ozelkan et al., 2016). The SPI is calculated based on the 
precipitation probability in different time scales. Thus, 
fitting an appropriate probability distribution to the time 
series of precipitation at a certain time scale is the first step 
for calculating this index. According to the existing 
literature, it was determined that the parametric Gamma 
distribution demonstrates a suitable fitting to the monthly 
precipitation data series. Therefore, the SPI theory was 
firstly introduced on the basis of the Gamma distribution as 
a parametric function (Edwards and McKee, 1997; 
Guttman, 1999; Thom, 1996). However, parametric 
methods have some limitations in constructing drought 
indices; the empirical probability with distribution-free 
function can be used as a more reliable alternative for 
calculating a nonparametric standardized index (Huang et 
al., 2015). 

Calculation of parametric distributions is based on 
parameters that determine the properties of the 
probability curve such as shape, skewness and kurtosis. 
This can lead to misleading results, especially at a local 
scale. On the other hand, nonparametric statistical 
distributions (e.g. KDE) estimate the probability density 
function of observations, not only by taking into account 
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various parameters, but also by using all observations 
(depending on the Kernel Density Function being 
continuous or discrete). Compared with parametric 
methods, the main advantage of nonparametric methods 
is their functionality as a reliable tool for modeling natural 
phenomena in various fields, such as the generation of 
climatic data like temperature and precipitation (Lall et al., 
1996; Rajagopalan et al., 1997b; Mehrotra et al., 2006; 
Srikanthan et al., 2004; Sharif and Burn, 2006), generation 
of hydrologic data such as streamflow (Sharma and O’neil, 
2002) and plan growth modeling (Gommes, 2006). In 
drought-based studies, a nonparametric method was used 
by Cancelliere et al. (2006) to estimate transition 
probabilities of SPI classes corresponding to different 
severities of droughts. Similarly, Kim et al. (2003) used a 
nonparametric KDE approach to estimate bivariate return 
periods of drought in Mexico. In recent studies, 
nonparametric approaches in modeling drought indices 
have been frequently used and recommended by many 
researchers (Farahmand and AghaKouchak 2015; Hao and 
AghaKouchak, 2014; Huang et al., 2015; Solakova et 
al.,2013; Zhu et al., 2015). For example, Solakova et al. 
(2013) compared parametric and nonparametric 
approaches for the calculation of two drought indices: the 
standardized precipitation index (SPI) and the standardized 
streamflow index (SSI). They utilised the Kolmogorov-
Smirnov goodness-of-fit test for selecting a parametric 
distribution. For the nonparametric approach, the Weibull 
plotting position has been used to calculate the cumulative 
frequency. Results of time series analyses with both 
parametric and nonparametric approaches revealed how 
the differences between these two approaches are more 
evident in terms of severity and less in terms of duration, 
and inter-arrival time.  

Hao and AghaKouchak (2014) noted drought monitoring 
based on a single variable may be insufficient for detecting 
drought conditions in a prompt and reliable manner, 
because of the complexity of drought phenomena in their 
causation and impact. They proposed a multivariate and 
multi-index drought monitoring framework, namely, the 
multivariate standardized drought index (MSDI), for 
describing droughts based on the states of precipitation 
and soil moisture. MSDI is calculated based on an empirical 
cumulative probability distribution, the Weibull plotting 
position formula, which compared to the Gamma-based 
SPI, provides more realistic and precise results. In this 
regards, Huang et al. (2015) and Zhu et al. (2015) 
introduced the Nonparametric Multivariate Standardized 
Drought Index (NMSDI), where precipitation and 
streamflow information were coupled to investigate the 
spatial and temporal characteristics of drought structure 
on the ground. They found that parametric methods have 
some limitations in constructing drought indices and 
compared to nonparametric techniques provide less 
accurate results. 

Farahmand and AghaKouchak (2015) introduced the 
Standardized Drought Analysis Toolbox (SDAT) that offers a 
generalized framework for deriving nonparametric 
univariate and multivariate standardized indices. SDAT 

functions based on a nonparametric framework can be 
applied to different climatic variables including 
precipitation, soil moisture, and relative humidity, without 
pre-assumption of representative parametric distributions. 
The most attractive feature of the framework is that it leads 
to statistically consistent drought indicators based on 
different variables. These studies demonstrated the 
superiority of nonparametric methods over parametric 
ones. Nevertheless, application of nonparametric 
continuous probability density functions in the SPI 
calculation procedure as an alternative method and their 
comparison with parametric approaches in terms of 
frequencies of extreme events have not been assessed. 
Sienz et al. (2012) compared several parametric methods 
in terms of frequencies of drought classes. 

In this study, apart from drought monitoring, a 
nonparametric algorithm based on the KDE function to 
obtain the best results of a precipitation-based index such 
as the SPI is presented. This study contributes to the 
current knowledge of drought by: (I) modeling of drought 
using a large data set that provides more accurate 
estimation of the occurrences of severe drought events, (II) 
applying a nonparametric continuous probability density 
function with high flexibility and low complexity and (III) 
focusing on frequencies of drought classes, which are 
important in accurate calculation of return periods, 
especially in hydraulic studies. 

2. Methodology 

2.1 Preliminary Analysis of Data 

In this study, long-term records of monthly precipitation 
data (1895-2002) are collected from four weather stations 
of Iran (Tehran, Bushehr, Esfahan, and Mashhad) to 
calculate the Standardized Precipitation Index (SPI). The 
length of precipitation records can affect the frequency of 
severe droughts. However, at least 30 years of 
precipitation data is sufficient for calculation of drought 
indices (Mckee et al., 1993), but a large sample size 
provides more accurate and reliable results for modeling of 
drought (Moreira, 2016). To calculate more reliable return 
periods of severe drought events, a long memory of the 
process is helpful, especially when a new approach is 
implemented and tested within a drought index. Thus, a 
107-years period is selected as a dataset for modeling the 
SPI using a nonparametric technique. Before 1950, these 
datasets were collected and recorded by the World 
Weather Records and after that time by Iran 

Meteorological Organization (Khalili, 1996). Mean and 
standard deviation of precipitation and geographical 
properties of these four stations are shown in Table 1. 

The time series help to statistically address data gaps 
caused by data unavailability in some years, especially 
during the world wars. Reconstruction of these gaps has 
been calculated using the auto-correlation method (Box et 
al., 1994). The auto-correlation method is preferred over 
other methods (e.g. regression and nearest neighbor 
methods) mainly because the process of reconstructing 
data does not only depend on the availability of data from 
neighboring stations but also preserve the temporal 
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correlation of the data. To check the homogeneity of 
annual data, the datasets are divided into two periods 

(before and after 1950) to be compared using the Run test 
(Kruger et al., 2002).

Table1. The geographical properties and descriptive statistics of precipitation at four weather stations 

Station name 
Geographical coordinate 

Height (m)  Precipitation Avg. (mm) 
Precipitation Sd. 

(mm) X Y 

Bushehr 50.83 28.95 19.6 257.7 115.5 

Esfahan 51.76 32.64 1550.4 115.3 42.8 

Mashhad 59.66 36.25 990 253.1 79.6 

Tehran 51.35 35.66 1195.8 233.5 59.5 

The result of the Run test shows that the datasets are 
homogeneous. In Fig. 1, time series of annual precipitation 
data are presented for all four stations. Trend analysis of 
annual and monthly data is very important due to the large 
data record available. Detrending is a very important pre-
processing technique in case a negative or a positive trend 

is detected in the data. As a trend can be caused by climate 
change, two methods namely the Mann-Kendall test and 
regression analysis based on Least Squares Errors are 
applied to evaluate significant trends for monthly and 
annual data.

 

Figure 1. Annual precipitation series at four selected stations

2.2 Standardized Precipitation Index (SPI) 

The SPI was introduced by McKee et al. (1993) to monitor 
and classify the drought/wet events based on the 
precipitation time series at a given point. This index is 
considered as a meteorological drought indicator 
calculated based on precipitation. The flexibility of SPI 

enables researchers to calculate drought severity at 
different time scales, which can be used for various types 
of droughts such as meteorological, agricultural and 
hydrological droughts. Meteorological and agricultural 
droughts occur at short time scales, and hydrological 
drought occurs at long time ranges (Smakhtin and Hughes, 
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2004; Keyanthash and Dracup, 2004; Barua, 2010). The SPI 
algorithm is based on the probability transformation of the 
Cumulative Distribution Functions (CDF) of aggregated 
precipitation at a moving time window to obtain a standard 
normal variable or SPI. Standardizing of the index is 
necessary because it results in a dimensionless index 
making it comparable in different times and locations 
(Guttman, 1999). In this study, the SPI was calculated at 
several time scales such as 3, 6, 9, and 12 months. The 3-
month time scale indicates seasonality of the precipitation 
process (Ji and Peters, 2003) and the 12-month time scale 
corresponds to a medium-term trend in the precipitation 

pattern (Potop et al., 2012) and may provide an annual 
estimation of hydrological condition.  

Since the SPI is a normalized variate, it is expected that the 
occurrence probabilities of different wet and drought 
classes follow the Normal distribution. These probabilities 
are represented in Table 2 as the expected probability for 
each class of SPI. The extreme, severe and moderate 
drought classes are represented by 2.3%, 4.4% and 9.2% of 
the SPI values, respectively. The remaining values are 
allocated to the wet and normal classes (Table 2).

Table 2. The SPI classes and their expected probabilities based on the standard normal distribution. 

SPI class Class symbol Description Expected probability (%) 

Larger than 2.0 Ew extreme wet 2.3 
1.5 to 2.0 Sw severe wet 4.4 
1.0 to 1.5 Mw moderate wet 9.2 
-1.0 to 1.0 N normal 68.2 
-1.5 to -1.0 md moderate drought 9.2 
-2.0 to -1.5 Sd severe drought 4.4 

Less than -2.0 Ed extreme drought 2.3 

The deviation of the aggregated precipitation CDF from the 
standard Normal distribution leads to overestimation or 
underestimation of the frequencies of estimated classes 
with respect to the expected ones (Table 2) (Sienz et al., 
2012). This is highly dependent on well-fitting of the CDF to 
the data. For example, if the frequency of the extreme 
drought class is estimated equal to 2.4% (2.2%) (from a 
given CDF fitted to precipitation data), it will be about 4% 
overestimated (underestimated) compared to the 
expected frequency of the same class in Table 2. 

2.3 Nonparametric distribution of Kernel Density Estimator 
(KDE) 

The KDE method estimates the density function without 
assuming that the data must conform to a particular 
parametric distribution. Hence, checking the goodness of 
fit does not require to perform statistical tests (Lall, 1995). 
In contrast, to calculate the density function using a 
parametric distribution requires that the distribution fits 
the data well. Sharma et al. (1998) developed the KDE 
method. In this method, to estimate the PDF of the data, a 
given observation (x) is selected among other observed 
values and the contribution of each observation is 
determined by a kernel density function. The effective 
parameter in this function is the bandwidth. The function 
value of variable 𝑥 is obtained from equation (1): 
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Where )
h

xx
(K i  is equal to 1 for xi within the bandwidth 

range, h, and equal to zero for xi out of this region. In fact, 
KDE allows all observations to participate in the estimation 
of the PDF value of a certain observation (x). Different 
forms of kernel functions have been used in different 
studies, the most popular being the standard normal 

function. It has been analytically proven that the form of 
the kernel function has no major role in the performance 
of the method (Rajagopalan et al., 1997a; Dinardo and 
Tobis, 2001). The value of the density function is estimated 
from equation (2) and based on the standard normal 
function:  
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The value for the exponential component of this equation 
is between 0 and 1, and it determines the participation 
level of independent data in estimating the value of the 
PDF for each x. Observations closer to the x observation 
have a higher contribution in estimating the value of the 
PDF. Hence, to estimate the density of any observation, a 
standard normal Kernel function, centered on the given 
observation, is fitted to the data. In other words, the n 
normal kernel functions are fitted to the n independent 
observations to determine the probability density function. 
In addition, determination of a suitable value for h is 
important. The large values of the bandwidth cause an 
excessively even estimation and its small values result in an 
uneven estimation with additive variance. There are 
different methods to estimate the optimized bandwidth. 
However, Silverman (1986) introduced an analytical 
equation (3) to estimate the optimized bandwidth: 

51n06.1h   (3) 

The estimated bandwidth by equation (3) is referred to as 
the global bandwidth in references. The local bandwidth 
was used to estimate the probability curve with a high level 
of accuracy (Sharma, 1996). In this case, a separate h 
parameter was defined to estimate every observed PDF. 
Abramson (1982) introduced the relation between the 
local and global bandwidth as: 
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 is the probability density function based on the 

global bandwidth obtained from equation (3) and g is the 

geometric mean of )x(f i



. According to equation (2), the 

optimized bandwidth is the only required parameter by the 
aforementioned nonparametric method and is obtained by 
means of simplified formulas. 

3. Results and Discussion 

In this section, results of the SPI based on KDE and Gamma 
distribution are evaluated and compared with estimations 
of expected frequency of SPI classes using long records at 

weather stations of Iran. The SPI is calculated at four scales 
3, 6, 9 and 12 months aiming at the evaluation of the 
flexibility of the PDFs (KDE and Gamma). 

3.1 Trend Analysis Results 

The results obtained from the Mann-Kendall method, on 
monthly and annual scales are presented in Table 3. 
According to the results, no significant trend was found for 
the annual scale, at all stations considered. On a monthly 
scale, a negative trend was observed in 37.5% of the series, 
while the rest of them did not follow any specific 
linear/nonlinear trends. To re-examine the significant 
trends, an analysis based on linear regression for the 
annual time series was applied and the statistical 
significance of the trends was evaluated using a t-student 
test. 

Table 3. Trend analysis using Mann-Kendall method at the studied stations, * Statistically significant at a 5% significant 
level. 

Time series Bushehr Esfahan Mashhad Tehran 

Oct. -7.798* -3.891* -0.56 -1.864 

Nov. 0.037 -0.738 -0.147 0.492 

Dec. 0.1 -1.016 -1.629 -0.77 
Jan. -0.702 -0.765 -1.587 0.388 

Feb. -0.649 -1.194 -0.765 0.676 

Mar. -1.220 -1.278 0.885 0.885 

Apr. -1.922* 0.529 1.121 1.713 

May -6.525* -1.393 1.618 -0.608 

Jun. -15.292* -6.808 -0.697 -2.634* 

Jul. -15.308* -9.505* -7.646* -4.19* 

Aug. -12.433 -9.961 -8.584 -5.284 

Sep. -15.413 -9.285 -7.693 -5.117* 

Water year 0.047 -0.911 0.1 0.304 

The negative and positive slopes represent the descending 
and ascending trends, respectively. The only statistically 
significant trend on a monthly scale was confirmed at the 
Bushehr station in January (Fig. 2). Based on these results, 
there is no overall statistically significant trend (negative or 
positive) over all time series. With regards to the difference 
between the findings of the two methods, it is not possible 
to identify the existence of significant trends in 
precipitation time series. The Mann-Kendall test did not 
perform well for the summer months. When zero values 
increase in the series, the Mann-Kendall statistic tends to 
higher negative values and it can come up with artificially 
statistically significant results. The results of the regression 
analysis confirmed the lack of linear trends in precipitation 
series, except for January (Fig. 2). The findings are 
consistent with Khalili’s (1996) study in which none of the 
tests detected significant climate change effects on 
precipitation for the data of the four stations. 

3.2 KDE parameter 

To estimate the global bandwidth, the value of )x(f i



was 

calculated on a monthly scale. Estimating the geometric 

mean of )x(f i



, the local bandwidth for any event was 

exclusively determined, thus avoiding excessively smooth 

and uneven estimations in the vicinity of distribution tails 
and modes, respectively. 

 

Figure 2. A linear regression model fitted to precipitation 
data of January at Bushehr station. The t-student statistics 
is equal to 2.656 identifying a statistically significant trend 

According to equation (4), ranges with low densities (such 
as tails) have a large bandwidth and ranges with high 
densities (such as modes) have a low bandwidth. To 
determine the local bandwidth, however, the accurate 
determination of the global bandwidth is important. The 
importance of the primary choice of the bandwidth is 
illustrated in Fig. 3. The graph shows PDF curves for the 
aggregated series of precipitation of Esfahan station at a 
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12-month time scale (from February o January). The points 
on the horizontal axis represent the 107 precipitation 
events. The KDE function is fitted to the aforementioned 
data with three different global bandwidths. The red curve 
indicates the KDE function considering the one that equals 
18.26, determined by equation (3) as referenced 
bandwidth. The dotted and blue curves represent 
bandwidths lower and higher than the one of the red curve, 
respectively. Setting the bandwidth smaller and larger than 
the referenced bandwidth, the PDF curves appear strongly 
uneven and even, respectively. 

 

Figure 3. Effect of the bandwidth value (BW) on the 
smoothness of the PDF curves related to the 12-month 

aggregated series of precipitation (i.e. sum of 
precipitation from February of last year to January of 

current year) at the Esfahan station 

The KDE function can be properly fitted to positively or 
negatively skewed data as well as to symmetric ones 
without the need for other parameters. This is a distinct 
advantage of the KDE compared to parametric methods 
such as the Gamma distribution. The PDF curves based on 
the KDE for four-time scales are presented in Figure 4.  

 

Figure 4.PDF curves based on the KDE for four-time scales 
related to the aggregated series of precipitation of 

January recorded at Esfahan station 

The curves demonstrate the aggregated series of 
precipitation of January recorded at Esfahan station. It can 
be clearly seen that, as the time scale of SPI increases, the 
frequency of zero values would decrease and the PDF curve 
would be closer to the one of the Normal distribution. 
Accordingly, the 3-month curve is positively skewed and 
the 12-month curve is almost symmetric. Thus, the KDE 
function successfully generates the variabilities in the PDF 
curves of the various ranges of observations (Fig. 3). 

3.3 Comparisons 

In this subsection, the performance of two PDFs is 
compared in terms of the frequencies of drought SPI 

classes. According to the different structure nature of the 
two methods, performing the conventional statistical 
comparisons such as applying goodness-of-fit tests would 
not be possible. Therefore, comparisons of the frequencies 
of drought SPI classes have been considered. As previously 
stated, any deviation from the probabilities mentioned in 
Table 2 results in underestimation or overestimation of the 
frequency of a drought class, which is important in drought 
risk assessment. The consequence of such abnormalities 
affects the theoretical computations of drought return 
periods. 

Bar graphs of different percentages between expected 
frequencies and the ones resulting from PDFs are provided 
in Fig. 5 to 8. Each graph shows four bar graphs for the 
various time scales- 3, 6, 9, and 12 months. The black and 
white bars indicate the KDE and Gamma PDFs, respectively. 
Bars above the horizontal axis (positive deviations) 
represent overestimation and bars under the horizontal 
axis (negative deviations) represent underestimation. The 
reason for these deviations is directly connected to the 
appropriateness of the PDF. This is particularly important 
in the lower tail of the precipitation distribution 
representing extreme droughts, as any overestimation 
(underestimation) of the probabilities in this area leads to 
underestimation (overestimation) of the frequency of 
extreme events. Since SPI was used as the drought index, 
an analysis of the drought classes was conducted. 

Fig. 5 represents the SPI on a 3 months' time scale. In 
Bushehr, the frequency of extreme droughts has been 
about 4% overestimated by the KDE and about 7% 
underestimated by the Gamma distribution. The KDE 
seems to perform relatively better, however, both 
methods do not show significant deviations. The frequency 
of severe droughts has been underestimated by the 
Gamma about 16%, while the Gamma distribution is judged 
extremely unacceptable for moderate droughts 
(overestimation up to 150%). In both extreme and severe 
classes, the KDE provides relatively satisfactory outcomes. 

In Esfahan, the frequency of extreme droughts produced 
by the KDE is close to the expected value, whereas the 
Gamma distribution overestimates it about 7%. The 
frequency of severe droughts has been underestimated by 
both KDE and Gamma methods, but KDE is relatively more 
efficient. This condition also holds for moderate droughts 
(Fig. 5). KDE (Gamma) overestimated (underestimated) up 
to 11% (up to 17%) the frequency of extreme drought in 
Mashhad. Findings for the KDE overperform the ones for 
the Gamma in all other drought classes, too. Tehran’s 
findings are the same as the ones for Esfahan, excluding the 
moderate droughts where the Gamma distribution 
provides better results. According to an overall assessment 
of the aforementioned results, the KDE is judged more 
suitable than the Gamma to estimate the frequency of 
drought classes on the time scale of 3 months. In some 
positions, however, the Gamma distribution provides 
acceptable results because it fits the data well. 

Fig. 6 illustrates differences (in %) between the estimated 
frequencies of each class of the 6 months SPI based on KDE 
and Gamma distribution and the corresponding expected 
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frequencies mentioned in Table 2. In an overall view, the 
differences for KDE are less than 10% and for the Gamma 
distribution are larger than 45%. To provide more 
information, in Bushehr KDE has a poorer performance 
than the Gamma distribution (overestimates about 5%, 

while for the Gamma this percentage is close to 0). Both 
methods estimated the frequency of severe droughts close 
to the expected value (percentages close to 0). In the case 
of the moderate class, both methods underestimate the 
expected PDF, indicating that KDE is better.

 

Figure 5. Percentages of the 3 months SPI classes based on KDE and Gamma distribution for the stations of interest. The 
class symbols (x-axis) were introduced in Table 2 

 

Figure 6. Percentages of the 6 months SPI classes based on KDE and Gamma distribution for the stations of interest

In Esfahan, the Gamma has underestimated the 
frequencies of extreme and severe drought classes up to 
20% while KDE has overestimated them below 10%. Also, 
the better result is found for KDE in the case of the 
moderate drought class. The graph for Mashhad highlights 
considerable underestimation about 45% and 
overestimation about 30% by the Gamma distribution in 
extreme and severe classes, respectively. Results by the 
KDE do not show considerable deviations for both classes. 
Such a result is more gently observed for the moderate 
class. In Tehran, the Gamma distribution produces 
satisfactory results for estimating extreme drought class of 
SPI as well as KDE for other classes of SPI. To sum up, the 
KDE method fitted to the aggregated series of precipitation 

at a time scale of 6 months, as for the case of the 3 months' 
time scale, performs better than the Gamma distribution. 

As shown in Fig. 7, results of the KDE have a better overall 
efficacy compared to the Gamma at the time scale of 9 
months. Estimating the frequency of extreme droughts, the 
largest percentage deviation of KDE is about 4% (Tehran) 
and of the Gamma distribution it is about 46% (Mashhad). 

Better results for the Gamma distribution are obtained in 
the extreme drought class in Tehran in which different 
percentages are close to 0. Similar results are found for the 
time scale of 12 months (Fig. 8). Therefore, KDE offered 
significantly better performance in comparison with the 
Gamma distribution in terms of accuracy of SPI results and 
of its integrity in all time scales.
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Figure 7. Percentages of the 9 months SPI classes based on KDE and Gamma distribution for the stations of interest

According to all bar graphs (Fig. 1-8), in both KDE and 
Gamma methods, the percentage of the normal class of SPI 
(representative of the middle part of SPI distribution) is 
slightly different (the difference being less than 10%) than 
the corresponding expected percentage of Table 2The 
maximum differences for the normal class of SPI based on 
KDE and Gamma were 1% and 9%, respectively, which 
occurred in Esfahan and at the time scale of 3 months.  

According to the results, the KDE is more reliable than the 
Gamma in the middle of the distribution (i.e. normal class) 
as well as in the tail (i.e. drought classes).The Gamma has 
created deviations more than 100% in the tail of the 
distributions, while its efficacy is better in the middle. 

To demonstrate the effects of the deviations on historical 
series of SPI based on KDE, Gamma, and empirical 
distribution, a given period (1960-1976), with extreme 
events, has been shown in Fig. 9.  

 

Figure 8. Percentages of the 12 months SPI classes based on KDE and Gamma distribution for the stations of interest

The segment of SPI’s time series given in Fig. 9 belongs to 
Bushehr station. In this graph, the calculated SPI9 based on 
the theoretical functions is shown as a curve graph while 
the bar graph represents SPI9 based on the empirical 
function. The graph covers the period of 1960-1975. 
According to Fig. 7, the Gamma function overestimated the 
class of extreme droughts up to 15%. The same outcome is 
clearly perceived from the Fig 9.  

4. Discussions 

The reason for the superiority of a given distribution 
compared to other distributions may be related to the 
statistical features of the available data and flexibility of the 

given distribution. For example, the Normal distribution is 
not suitable for positively or negatively skewed data. The 
Gamma distribution may be a suitable option when data 
are positively skewed due to the existence of the shape 
parameter in its structure, moreover, there is a higher 
probability that it can be selected as the best distribution 
when data are skewed (Guttman, 1999). 

In spite of the flexibility of the Gamma to fit various data, 
the quite bad fitting to the distribution tails, median and 
mode of the data results in considerable deviations in 
frequencies of drought classes. These results are important 
for post-monitoring processes such as calculating return 
periods. An underestimation (overestimation) in the 
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frequencies of SPI drought classes can affect the return 
period of droughts. For example, if the return period of a 
drought class is equal to 20 years, the underestimation by 
a theoretical distribution equals 50% resulting in return 
periods of that drought class changing from 20 to 40 years. 
Thus, the wrong selection of a distribution provides 

misleading results. Since the concept of return period plays 
a key role in studies of hydrology and water resource 
management, reduction of the estimation error of drought 
frequencies is necessary for efficient management and 
making right decisions under drought conditions (Sienz et 
al., 2012).

 

Figure 9. Comparison of the historical values of SPI in Bushehr and at a 9 months' time scale

Utilization of KDE in SPI structure has two advantages: 1. 
The KDE only has one parameter easy to calculate 
mathematically. Furthermore, KDE does not require the 
inclusion of other parameters to assess skewness and 
kurtosis of data; 2. The KDE presents more efficient results 
than the Gamma distribution which is revealed by 
comparisons of percentage differences at each class of SPI. 
Since KDE was not embedded in SPI in the past studies, it is 
unlikely to compare the results of this study with findings 
of other studies. Nevertheless, comparison of the findings 
of the study with past studies that used other 
nonparametric approaches, as presented in Section 3.3, 
indicated that the results are in accordance with findings of 
Solakova et al. (2013), Hao and AghaKouchak (2014), 
Farahmand and AghaKouchak (2015). Moreover, the 
underperformance of the Gamma distribution function is 
acknowledged by Sienz et al. (2012). 

5. Conclusion 

A suitable CDF provides more accurate results, especially 
for extreme drought events. Small differences in 
smoothing distribution tails can create significant errors in 
calculating frequencies of drought classes as well as return 
periods of hydrological and meteorological drought events. 
Application of a nonparametric approach in calculation of 
a drought index (i.e. probability transformation) provide 
more precise estimation of that index. 

To achieve the main aim of this study, the efficiency of a 
parametric (Gamma) and a nonparametric (KDE) 
probability density function are compared to estimate 
frequencies of drought classes from SPI at 3, 6, 9 and 12-
month time scales at the selected weather stations. The 
main features of this study are: 1) this study used a long 
precipitation dataset to calculate SPI. This helps to 
compare the obtained frequencies to the expected values, 
and 2) this study is the first one that applied the KDE 
nonparametric distribution in the skeleton of the SPI 

algorithm. Due to the nonparametric nature of the KDE, its 
functionality has been also approved by others studies.  

As discussed in this study, introducing one fixed parametric 
distribution might not be possible as it would be a pre-
assumption for all months and stations. If one distribution 
function among parametric methods is considered suitable 
in a region, it does not necessarily produce the best results 
for other regions and months, and should be examined for 
this purpose. In contrast, the KDE nonparametric 
distribution could be introduced as an overall probability 
distribution for all months of the year at the chosen 
weather stations. 

Although the parametric methods have quite a high 
accuracy in the middle part of the data distribution, these 
methods usually overestimate or underestimate the 
extremes. Thus, it is necessary to apply a distribution 
function that is not just suitable for any region but also it 
provides more accurate estimation of the occurrence of 
extremes as well as of the observations in the central part 
of the distribution. The KDE nonparametric method 
presents both these two advantages.  

As aforementioned, the reason of the 
overestimation/underestimation of the SPI is related to the 
underestimation/overestimation of the calculated CDF by 
theoretical functions. However, these drawbacks were 
considerably improved by using the KDE method. The 
expected frequencies of the SPI drought classes are very 
close to the observed values for the KDE nonparametric 
method, compared to the parametric methods. This is 
helpful in the drought risk studies where the estimation of 
return periods is a very important procedure. 

According to the results of the present paper, it is 
recommended that a nonparametric probability 
distribution based on kernel functions can be used in the 
SPI computation algorithm. This approach increases the 
accuracy of drought return period that improves the 
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process of knowledge-based management of various fields 
(e.g., agriculture, tourism, insurance, etc.). Generalizing the 
univariate to the bivariate index enables us to use joint 
distributions based on KDE with parameters estimated 
using the Maximum Likelihood or other similar methods. In 
addition, it is worthy to note the scrutiny needed to select 
a proper distribution of drought characteristics such as 
severity and duration. Hence, the three following pathways 
are recommended for further improvement of the drought 
research: 1) Rerunning the model with data collected from 
many stations, 2) monitoring and analysis of drought 
characteristics in GIS with KDE-based SPI at regional, global, 
and continental levels, 3) developing KDE-based indices 
using more than one variable such as temperature and 
evapotranspiration.  
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