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ABSTRACT 

In recent decades, there has been an increasing interest in the prognosis of maximum surface ozone 
concentrations due to the adverse effects on human health, animal population, agricultural productivity 
and forestry. The present study deals with the development and application of Artificial Neural Network 
(ANN) models in predicting the maximum daily surface ozone concentration in several locations within 
the greater Athens area (GAA), 24-hours in advance. Meteorological and air pollution data during the 
period 2001 to 2005 were provided by the network of the Hellenic Ministry of the Environment, Energy 
and Climate Change. Hourly values of barometric pressure and total solar irradiance for the same period 
have been recorded by the National Observatory of Athens. A training data set for the ANN prognostic 
model was generated by employing the superposed epoch analysis. 

The evaluation of the performance of the developed model, using appropriate statistical indices, clearly 
indicates that the risk of surface ozone values exceeding the European Union (EU) threshold for human 
health protection can be successfully predicted. This suggests that the proposed ANN model can be used 
to issue warnings for the general public and especially certain sensitive groups of the population.  

Keywords: ambient air pollution, surface ozone prediction, artificial neural networks. 
 
 
1. Introduction 
 
Ozone (O3) is an allotropic form of oxygen. It is a relatively unstable gas, colorless, strong oxidizer, highly 
toxic, with a characteristic odor. It is slightly soluble in water and chemically unstable. The ozone layer in 
the stratosphere plays a critical role in protecting life on Earth by absorbing most of solar ultraviolet 
radiation. In the troposphere and mainly at ground level where life exists ozone contributes to poor air 
quality. Ground level ozone is a secondary pollutant produced from primary pollutants such as nitrogen 
oxides, hydrocarbons from car exhausts and industry and volatile organic compounds (VOCs). The 
primary pollutants, with the contribution of solar radiation, react with oxygen (photochemical reaction), 
especially in warm and sunny weather, to form ozone (O3). 
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Short duration exposure (1-3 hours) and prolonged duration exposure (6-8 hours) in an ozone polluted 
environment can result in a number of health effects that are observed in broad segments of the 
population. Even healthy people will experience effects such as induction of respiratory symptoms, 
decrements in lung function and inflammation of airways. High daily ozone concentrations are 
associated with increased asthma attacks, increased hospital admissions and also increased risk of 
premature death from heart or lung disease. Ozone has also adverse effects on the environment, 
vegetation and the ecosystems. It causes deterioration of the productive capacity of the agricultural 
land and destroys the foliage of trees and the aesthetics of forests and parks. 

The increasing surface ozone concentration level, in recent decades, has become a major concern 
worldwide. Numerous studies, over the last decade, refer to the effects of air pollution on public health 
(Künzli et al., 2000; Katsouyanni et al., 2003; Bartzokas et al., 2004; Paliatsos et al., 2006; Nastos et al., 
2008; Nastos, 2008; Bosson et al., 2009; Tonne et al., 2010; Kalantzi et al., 2011). Surface ozone 
concentrations in the eastern Mediterranean region have been analyzed previously (Ziomas et al., 1989; 
Álvarez et al., 2000; Kalabokas et al., 2000; Kalabokas et al.,2004; García et al., 2005; Gerasopoulos 
et al., 2006; Paliatsos et al., 2008). Several studies have shown that the background ozone 
concentrations in the troposphere have more than doubled (Volz and Kley, 1988; Staehelin and Smith, 
1991; Bonasoni et al., 2000). The increased photochemical ozone production observed in the 
Mediterranean region may be attributed to the high level of solar irradiance in combination with the 
emissions of anthropogenic ozone precursors. These precursors may be transported over long distances 
under certain meteorological conditions, resulting in surface ozone formation far from the sources 
(Bloomfield et al., 1996; Gardner and Dorling, 2000; Dueñas et al., 2002). 

Air quality has emerged as a major factor affecting the quality of living in urban areas, especially in 
densely populated and industrialized areas. Air pollution control and legislation to regulate various types 
of pollution are necessary in order to prevent conditions becoming worse in the long run. At the same 
time, short-term forecasting of air quality is required in order to take preventive and evasive action 
during episodes of atmospheric air pollution (Lu et al., 2002). It could be possible to avoid excessive 
medication, reduce the need for hospital treatment and even avoid premature deaths by influencing 
people’s daily habits or by placing restrictions on traffic and industry. Thus, it is clear that an accurate 
ozone level prediction system will be a valuable tool. Numerous statistical and ANN models have been 
developed and tested in order to predict ozone concentrations (Spellman, 1999; Elkamel et al., 2001; 
Coman et al., 2008; Chattopadhyay and Chattopadhyay-Bandyopadhyay, 2008; Ettouney et al., 2009; 
Zhang et al., 2010; Mahapatra, 2010; Feng et al., 2011). 

In the present study, an ANN model was developed and evaluated in order to simultaneously predict the 
maximum daily 8-hour average values of surface ozone concentration for the next day in seven different 
regions within the GAA. The innovation of the current work is that the developed predictive model 
incorporates the key features of previously developed models and, additionally, provides simultaneously 
real time prediction for all the seven examined sites within the GAA. Therefore, there is no need for a 
separate model for each site. 
 
2. Data and methodology 

 

2.1 Area and data 

The city of Athens is located in an area of complex topography within the Athens basin (450 km2) being 
the southernmost capital on the European mainland. Mountains bound the Athens basin with heights 
ranging from 400 to 1500 m at the west, north and east sides. Openings exist between these mountains 
at the northeast and at the west of the basin, while the sea extends southwards (Saronikos Gulf). The 
Athens basin has a southwest to northeast major axis and is bisected by a cluster of small hills. The 
prevailing winds blow from N and NE in late summer, fall and winter and from SSW and SW in spring and 
early summer. The NE and SW directions coincide with the major geographical axis of the basin. The 
ventilation of the basin is poor during the prevalence of local circulation systems, such as sea/land-
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breezes (Larissi et al., 2010). The GAA, like most metropolitan areas in the world, faces severe air 
pollution problems due to high population density and the accumulation of major economic activities in 
this region. The contribution of the intense sunshine to the high levels of photochemical air pollution, 
especially during summer months, is significant. The air pollution problems are often exacerbated by 
factors that favor the accumulation of air pollutants over the city, such as topography (basin surrounded 
by mountains), narrow and deep street canyons and adverse meteorological conditions, such as 
temperature inversions, low wind speed, high air temperature, extensive periods of dryness (Larissi 
et al., 2010). 

The developed ANN model is based on the patterns of ozone data from seven different regions within 
the GAA. The seven examined monitoring stations are Patission (PAT) in the city center, Galatsi (GAL), 
Maroussi (MAR), Lykovrissi (LYK), Liossia (LIO), Thrakomakedones (THR) and Agia Paraskevi (APA). Figure 
1 shows a map of the GAA with the seven monitoring stations.  

 

Figure 1. The map of GAA with the seven examined monitoring stations 

The meteorological and air pollution data used in this study have been recorded by the network of the 
Hellenic Ministry of Environment, Energy and Climate Change (HMEECC). A more detailed description of 
the HMEECC network can be found elsewhere (Larissi et al., 2010). The meteorological data set include 
hourly values of air temperature, relative humidity, wind speed and wind direction over a five-year 
period, 2001-2005. The air pollution data set include the 8-hour average values of surface ozone 
concentration and the hourly NO2 concentrations for the same period. Finally, hourly values of total 
solar irradiance and barometric pressure recorded by the National Observatory of Athens were used in 
the analysis. 

2.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are a branch of artificial intelligence developed in the 1950s aiming at 
imitating the biological brain architecture. They are an approach to the description of functioning of 
human nervous system through mathematical functions. Typical ANNs use very simple models of 
neurons. These artificial neurons models retain only the very rough characteristics of biological neurons 
of the human brain (McCulloch and Pitts, 1943). ANNs are parallel-distributed systems made of many 
interconnected non-linear processing elements (PEs), called neurons (Hecht-Nielsen, 1991). A renewal 
of scientific interest has grown exponentially since the last decade, mainly due to the availability of 
appropriate hardware that has made them convenient for fast data analysis and information processing 
(Viotti et al., 2002). Many ANN models have been developed in the last fifteen years for very different 
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environmental purposes (Nunnari et al., 1998; Prybutok et al., 2000; Heymans and Baird, 2000; Karul 
et al., 2000; Antonic et al., 2001; Kolehmainen et al., 2001; Balaguer Ballester et al., 2002; Schlink et al., 
2003; Corani, 2005; Slini et al., 2006; Dutot et al., 2007; Papanastasiou et al., 2007; Moustris et al., 
2010a; b; 2011). 

The Multi-Layer Perceptron (MLP) is the most commonly used type of ANNs. Its structure consists of PEs 
and connections (Hecht-Nielsen, 1991; Caudill and Butler, 1992). The PEs are arranged in layers. The first 
layer is the input layer followed by one or more hidden layers and after that the final layer, which is the 
output layer. An input layer serves as buffer that distributes input signals to the next layer, which is a 
hidden layer. Each neuron of the hidden layer communicates with all the neurons of the next, if any, 
hidden layer, having in each communicating connection a typical weight factor. Each unit-artificial 
neuron in the hidden layer sums its input, processes it with a transfer function and distributes the result 
to the output layer. The number of hidden layers, all connected in the same fashion, may vary. The 
units-artificial neurons in the output layer compute the final output in a similar manner. The produced 
output value from the ANN is compared against a target value and an error is estimated. The previously 
described procedure, called a training cycle, is repeated. In each training cycle the values of the weight 
factors are modified in an orderly way until the estimated error is within acceptable limits, depending 
on the application. Since data flow, within the artificial neural network, from one layer to the next 
without any return path, such an ANN is defined as feed-forward ANN. 

2.3 Methodology 

The long-term objective of an environmental management system, with regard to surface ozone level in 
ambient air, is to limit the number of days with average ozone concentrations above 120 µg m-3. This is a 
target value for the protection of human health set out by EU directive (EU, 2002). 

Data from days before the episode day, when violations of the target value occurred, were used to train 
the ANN predictive model. In order to estimate best the number of days that should be taken into 
account, daily maximum 8-hour averages of surface ozone concentration, during days with violations of 
the surface ozone threshold, were organized in superposed epoch analysis illustrations (Panofsky and 
Brier, 1968; Singh and Badruddin, 2006). These are depicted in Figure 2. The “zero” day represents the 
mean value of the maximum daily 8-hour surface ozone concentrations during days with violations at 
any of the measuring sites of HMEECC’s network. The other days (named as -1, -2, etc) represent the 
mean values of the maximum daily 8-hour ozone for the same sites. Figure 2 indicates that when an air 
pollution episode has occurred there is a significant increasing trend of the maximum daily 8-hour mean 
values of surface ozone concentrations five days before the episode day. Furthermore, it appears that 
the phenomenon is smoothed out within four to five days after the episode day. 

The best ANN structure was selected based on a set of exploratory experiments. For the chosen ANN 
architecture, the trial-and-error method was applied (Spellman, 1999; Elkamel et al., 2001; Ettouney 
et al., 2009; Mahapatra, 2010) that is, after a training period, the number of PEs in the hidden layer 
were increased or reduced until the smallest prediction error was obtained. The selected ANN model 
consists of one input layer with 32 PEs, one hidden layer with 4 PEs and one output layer with 1 PE. 
According to the above analysis, the input data necessary for training the ANN model are: the station 
number (1, 2, 3, 4, 5, 6, 7) and month number (1, 2, …, 12), the maximum daily value of the 8-hour 
moving average of surface ozone concentration for the five previous days, the maximum daily value of 
NO2 hourly concentrations for the five previous days, the mode daily value of the wind direction for the 
five previous days, the mean daily value of the wind speed for the five previous days, the maximum daily 
value of air temperature for the five previous days, the daily total irradiance for the five previous days, 
the mean daily value of barometric pressure for the five previous days, the mean daily value of relative 
humidity for the five previous days and finally, the maximum daily value of the 8-hour moving average 
of surface ozone concentration for the next day. The final result (target value) produced by the model is 
the maximum daily value of the 8-hour moving average of surface ozone concentration for the next day. 

For each of the seven examined sites the available data set, from 2001 to 2005, was divided into two 
subsets. The first subset is the four-year period, from 2001 to 2004, and the second the one-year period 
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for 2005. The data from the first subset was used for training the ANN model while the second data 
subset was only used for evaluating the model’s prediction accuracy. 

 

Figure 2. 8-hour average surface ozone concentrations from HMEECC’s monitoring network seven days 
before and after the zero-day where an air pollution episode occurs during 2001-2005. 

In order to evaluate the results and the predicting performance of the developed model, statistical 
indices such as the coefficient of determination (R2), the mean bias error (MBE), the root mean square 
error (RMSE) and the index of agreement (IA) were used (Kolehmainen et al., 2001; Moustris et al., 
2010a). The accuracy of the proposed prognostic model, to predict the days that surface ozone 
concentration exceed the EU’s threshold value of 120 μg m-3, was assessed by using appropriate 
statistical indices such as the true predicted rate (TPR), the false positive rate (FPR), the false alarm rate 
(FAR) and the success index (SI) were applied (Moustris et al., 2010a). 
 
3. Results 
 
Table 1 presents the validation statistical indices between the observed and the predicted ozone 
concentrations for the seven examined stations and for the next 24-hours, respectively.  

Table 1. Statistical indices for the evaluation of the ANN model forecasting accuracy, for 1-day ahead 
prediction (year 2005). 

Station R2 MBE (μg m-3) RMSE (μg m-3) IA 

APA 0.622 +0.920 17.715 0.883 

GAL 0.639 +2.204 18.649 0.893 

LIO 0.727 +1.403 16.578 0.923 

MAR 0.710 +2.112 16.946 0.912 

PAT 0.226 +2.418 20.250 0.641 

THR 0.728 +2.466 18.665 0.921 

LYK 0.777 +0.928 20.076 0.929 
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(a) 

  

(b) 

Figure 3. Observed (blue line) and predicted (red line) maximum daily 8-hour surface ozone 
concentrations for 1-day ahead prediction for LYK (a) and PAT (b) stations (year 2005). 

The coefficient of determination values indicates that there was a close agreement between the 
recorded and the predicted 8-hour surface ozone concentration values for all forecasting cases (p<0.01). 
More specifically, the coefficient of determination takes values between 0.226 (PAT) and 0.777 (LYK), 
while the index of agreement ranges between 0.641 (PAT) and 0.929 (LYK). This shows that the 
predicted values are close enough to the corresponding observed values. The best results appear to be 
from LYK’s input dataset while the worst from PAT’s input dataset. 

The MBE values varied between 0.920 μg m-3 and 2.466 μg m-3, while the RMSE ones varied between 
16.946 μg m-3 and 20.250 μg m-3. These values indicate a good agreement between the predicted and 
the recorded values in the majority of the examined cases. 

The predicted and the observed time series of the daily maximum 8-hour average surface ozone 
concentration for the next day for the station of LYK (best prediction) and the station of PAT (worst 
prediction) are depicted in Figures 3a and 3b respectively.  

LYK station is a suburban station, for which the ANN model  had the best performance (Figure 3a, right 
panel) in predicting the maximum daily 8-hour average surface ozone concentration value for the next 
day. On the contrary, the city center PAT station is the one with the worst model performance (Figure 
3b, right panel). However this might be attributed to the heavy traffic load of the region. 

Table 2 presents the values of validation statistical indices of exceedances, a day when the maximum 
daily 8-hour moving average ozone’s concentration exceeds the threshold value of 120 μg m-3 (EU, 
2002). 
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Table 2. Statistical indices for the evaluation of the ANN model forecasting accuracy to predict the 
exceedance days (1-day ahead prediction, year 2005). 

Station X Y Z W TPR (%) FPR (%) FAR (%) SI (%) 

APA 112 13 40 186 89.6 17.7 26.3 84.9 

GAL 12 28 11 305 30.0 3.5 47.8 89.0 

LIO 21 30 45 255 41.2 15.0 68.2 78.6 

LYK 80 21 27 223 79.2 10.8 25.2 86.3 

MAR 25 32 31 268 43.9 10.4 55.4 82.3 

PAT 0 0 0 362 - 0.0 - 100.0 

THR 96 8 30 205 92.3 12.8 23.8 88.8 

According to Table 2, it appears that the developed ANN model shows a very good accuracy in 
predicting exceedance days. The TPR index shows that the model predicts correctly from 30.0% (GAL) up 
to 92.3% (THR) the observed exceedance days. The SI index, which measures the accuracy of the model 
to predict correctly if the next day will be or not an exceedance day, varies from 78.6% (LIO) up to 
100.0% (PAT). The overall results show that predictive accuracy of exceedance days of the developed 
prognostic ANN model is very good. 
 
4. Conclusions 
 
Ozone is one of the main air pollutants that degrade the quality of atmospheric environment within the 
GAA. The objective of this study was to develop and assess an ANN model for 1-day prediction for the 
maximum daily 8-hour surface ozone concentration values simultaneously in seven different regions 
inside the GAA. The performed analysis shows that the coefficient of determination between the real 
and the predicted 8-hour surface ozone concentration values (0.226–0.777), for the year 2005, 24-hours 
in advance, are statistically significant (p<0.01). The index of agreement between the real and the 
predicted 8-hour surface ozone concentration values (0.641–0.929), for the year 2005, 24-hours in 
advance, indicate a very good agreement between prediction and observation. In addition, the accuracy 
of the developed model is confirmed by the fact that the maximum value of MBE is up to 2.466 μg m-3 
while the maximum RMSE value is 20.250 μg m-3. Finally, the proposed prognostic ANN model shows a 
very satisfactory 1-day ahead prediction accuracy with respect to the the next day to be or not an 
exceedance day. 

The performance of the ANN should be further evaluated. The model could give more reliable 
predictions for the maximum daily 8-hour surface ozone concentrations by increasing the available input 
data necessary for training the model and improving data quality (e.g. eliminate blank days). The model 
also did not take into account other environmental factors, such as heavy traffic, that certainly affects 
the results. One further direction that should be investigated could be to train the model using the 
extreme values only (e.g. those>100 μg m-3). It is estimated that the success of the model would have 
been higher since the goal is to predict the episodes and the low 8-hour ozone concentrations. 
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