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ABSTRACT 

This paper deals with prediction of the response of karstic springs by means of artificial neural networks 
(ANNs). A feed-forward back propagation ANN with three layers has been developed, to predict flow rates 
of two karstic springs, located at Rouvas area, Crete, Greece, using rainfall data as input. While the number 
of neurons of the input and output layers was determined by choice of data and desired output 
respectively, the number of neurons of the hidden layer was decided by means of numerous tests. Data 
used in ANN training and testing include daily and monthly precipitation depths (from September, 2006 
to December, 2010) and measured flow rates of the two springs (from April, 2007 to December, 2010). 
Results show that the trained artificial neural network performed well, although flow rate measurements 
were not very regular. Moreover, the possibility of estimating the flow rate of one spring, based on 
measurements of the other has been investigated. Again the ANN gave satisfactory results. All spring flow 
rate and rainfall measurements are presented as an appendix, to facilitate further scientific research in 
the area of ANN application to water resources management. 

Keywords: karstic aquifer; karstic spring; artificial neural network; flow rate measurement 
 
 
1. Introduction 
 
Karstic aquifers are very important water resources for many areas of the world and it is estimated that 
20 to 25% of the global population depends on them (Ford and Williams, 2007). Their efficient 
management is a very challenging task. The first problem that arises is proper flow simulation; application 
of the empirical Darcy law, used for flows through porous media, may not yield satisfactory results in 
karstic aquifers, due to the size and structure of void spaces, serving as water conduits. 

When development of turbulent flow is anticipated, use of the Forchheimer formula leads, in principle, 
to more accurate results. This formula reads: 

gradh=cV+dV2 (1) 

where h is the hydraulic head and V the Darcy velocity. Its combination with continuity equation is not 
that efficient, from the computational point of view, and for this reason its application is rather restricted 
(e.g. Moutsopoulos and Tsihrintzis, 2005; Mathias and Todman, 2010). 

Moreover, in karstic (and fractured) aquifers different families of void spaces may exist, due to 
karstification and primary rock permeability. In such cases, dual porosity models might seem more 
appropriate. They have the drawback, though, of introducing additional flow parameters that are not 
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easily defined (i.e. hydraulic conductivity for each medium and a constant for mass exchange between 
the two).  

When rock karstification is intense, water actually flows through a network of natural conduits. In such 
cases models used to describe flows in pipe networks are more suitable. But knowledge of the network 
geometry is in most cases restricted, therefore some kind of macroscopic approach cannot be avoided 
(e.g. Jeannin, 2001). Moreover, in many cases flow due to the primary porosity of the host rock cannot be 
neglected (e.g. Liedl et al., 2003). In such cases, combination of different flow models can be very useful 
(e.g. Rooij et al., 2013). Use of Navier-Stokes equations has also been examined (Masciopinto and 
Palmiotta, 2013). 

The last few years karstic aquifers have been simulated either as systems of reservoirs (e.g. Fleury et al., 
2009) or by means of artificial neural networks (ANNs), as discussed in the following section. In our study 
we have used an ANN to “simulate” a karstic aquifer, feeding two springs. The karstic system is located at 
the Rouvas area of the island of Crete, Greece, shown in Figure 1. Actually, our purpose was to forecast 
the spring flow rates, based on local rainfall data. The reason for using ANN is explained in the following 
section.  
 
2. Artificial neural networks and their usefulness 
 
Artificial Neural Networks (ANNs) are based on the idea that certain properties of biological neurons can 
be used for the creation of a simplified “brain”, which imitates, to an extent, the learning and 
computational capacity of human brain. They are essentially grids of processing units, called neurons, 
which are arranged in layers (input, hidden and output layers). Each neuron produces an output value, 
based on input information received from other neurons. Each item of input information is weighted by 
a coefficient, called synaptic weight, which expresses the importance attributed to the particular source 
of input information. Neuron output depends on the weighted sum of inputs and a preselected activation 
function. 

Approach to a problem by means of ANNs does not aim at mathematical description of natural 
phenomena, but at obtaining quantitative results for given data sets, based on “experience” from similar 
known cases. So, ANNs could be particularly useful when a) mathematical simulation of the physical 
phenomena is either impossible or too complicated and b) Parameters necessary for mathematical 
simulation (e.g. hydraulic conductivity, storativity) cannot be defined with acceptable accuracy. These 
situations arise quite often with karstic aquifers, rendering use of ANNs attractive. Moreover, surrogate 
models, such as artificial neural networks, are used quite often in conjunction with evolutionary 
optimization techniques, such as genetic algorithms, in order to reduce total computational volume, even 
when porous aquifers are involved (e.g. Nikolos et al., 2008; Sreekanth and Datta, 2010). Combinations of 
ANNs with deterministic models have also been used (e.g. Lallahem and Mania, 2003; Jain and Srinivasulu, 
2004; Chen and Adams, 2006). 

ANNs have been already used extensively in water resources management problems (e.g. Kralisch et al., 
2003), modeling of rainfall-runoff relationship (e.g. Baratti et al., 2003; Rajurkar et al., 2004; Pan et al., 
2007), flood forecasting (e,g. Lekkas et al., 2004), groundwater level forecasting (e.g. Daliakopoulos et al., 
2005; Trichakis et al., 2011), groundwater pollution prediction (e.g. Sahoo et al., 2005), determination of 
aquifer parameters (e.g. Zio, 1997; Samani et al., 2007), prediction of reservoir inflow and level (e.g. 
Coulibaly et al., 2005; Chang and Chang, 2006), etc. Regarding prediction of karstic spring discharge, 
encouraging results have been obtained, at least when there are abundant field data (e.g. Kurtulus and 
Razack, 2007; Hu et al., 2008). 

The most difficult stage in ANN application is selection of the most suitable structure for the examined 
problem, including number of layers, number of neurons of each layer, activation functions and 
connection weights. Experience from similar applications can serve as a guide, but the final choice is 
definitely case-specific. 
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Despite their usefulness, ANNs (or other surrogate models) may introduce some additional uncertainty. 
In such cases, use of ensembles of surrogate models has been recommended (Sreekanth and Datta, 2011). 
 
3. The study area 
 
Karstic systems are rather common in Greece (e.g. Novel et al., 2007; Tsakiris et al., 2009). As mentioned 
in section 1, this paper focuses on two karstic springs appearing at a distance of 800 m from each other, 
in the area of Gergeri (ex-Rouvas municipality), Crete, which is shown in Fig. 1. The two springs are called 
“Mai Vryssi” and “Pera Vryssi”. They are found at an elevation of 500 m asl approximately, while the 
average elevation of the area, which feeds the karstic system, is 950 m asl. A number of other springs 
appear in the same area, some of them in rough terrain. 

 

Figure 1. Study area (Paleologos et al., 2013) 

3.1 Field data 

To train and test the ANN, field data have been used, namely local daily precipitation and flow rates of 
the two karstic springs. These data cover a period larger than 3 years (daily rainfall from September, 2006 
to December, 2010 and measured flow rates of the two springs from April 2007 to December 2010) and 
they have been collected by N. Darivianakis, mostly in the framework of his Ph.D. Thesis (Darivianakis, 
2011). 

A complete and reliable set of rainfall data (rainfall depth per day) was available from a rain gauge which 
is installed at the vicinity of Pera Vryssi, namely at a very suitable location for the purpose of this study. 

The flow rates of the two springs have been measured in a very simple way, by means of a chronometer 
(accurate to one hundredth of a second) and a volumetric vessel. That vessel had a total volume of 18 lt. 
Each spring has two outlets. For each outlet, the time to fill the vessel up to the indication of 15 litres was 
counted three times. Then, the mean was used to calculate the flow rate of each outlet. Finally, the flow 
rate values of the two outlets were added to each other. While measured flow rate values are reliable, 
the measurement schedule has been rather irregular, rendering ANN application more challenging. 

A table including all field data appears in Appendix, in order to facilitate testing of other ANNs. Dates of 
rain and/or spring flow rate measurements are shown in the first column. Precipitation depths (in mm) 
appear in the second column, while the third and fourth include flow rates of Mai Vryssi and Pera Vryssi, 
respectively (in Lit s-1).  
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4. The investigated problems 
 
Three problems have been investigated: 

a. Simultaneous forecast of the flow rates of the two springs, based on precipitation data. 

b. Forecast of the flow rate separately for each spring, based on precipitation data. 

c. Forecast of the flow rate of one spring, based on the flow rate of the other and on precipitation data. 

4.1 Selection of basic ANN features  

As mentioned in section 2, selection of ANN is a case-specific task. We have opted for feed-forward, back-
propagation ANN, based on literature for similar problems. 

Back-propagation ANNs (e.g. Fausett, 1994) use supervised learning algorithms, namely they are provided 
both with input patterns and desired output patterns. After producing their own output, the ANNs 
calculate the discrepancy between estimated and expected output values, and adjust the synaptic weights 
in order to minimize it. The Root Mean Squared Error (RMSE) is used as discrepancy measure. Commonly 
used back propagation networks minimize RMSE by means of a gradient descent technique. In this work, 
we have used the Quickprop algorithm, which has been proposed by Fahlman (1988) and encompasses 
training speeding techniques. This choice was based mainly on previous positive experience of the authors 
with this algorithm, in cases with restricted field data (Fytianos and Katsifarakis, 2013). Moreover, the 
sigmoid function is used as activation function. 

We have restricted our study to ANNs with three layers, namely with one hidden layer only, based again 
on literature for similar problems (e.g. Lallahem et al., 2005; Kurtulus and Razack, 2007; Hu et al., 2008) 
and on our anticipation (based on the geological features of the karstic area) that additional complexity, 
introduced by more hidden layers, will not be necessary. 

Selection of a suitable ANN structure for a particular problem may not be unique. Using the larger part of 
the aforementioned rainfall and spring flow data Paleologos et al., (2013) have come up with different 
ANN structures.  

4.2 Selection of input data 

To complete the construction of ANN for each of the aforementioned problems, we had to decide on: a) 
The combination of input data (and consequently the number of the neurons of the input layer) and b) 
the number of neurons of the hidden layer. 

Decision on the input data was based on comparative inspection of precipitation and spring flow rate data 
and on soft information on the behavior of the two springs, provided by residents of the area, who call 
the “Pera Vryssi” spring short (namely responding earlier to rainfall and for a shorter period of time). Our 
aim was to arrive at practically useful predictions, namely to estimate spring flow rates at least few days 
in advance. Moreover, we aimed at checking whether a gross prediction, based on rainfall data of previous 
months, was meaningful. Having the above in mind, we conducted trials, using: a) Rainfall depths of the 
5th up to the 16th day prior to the flow rate measurement date and b) Mean precipitation of the first up 
to the sixth month prior to the flow rate measurement date. After evaluation of these initial trials, we 
decided to include some, or all, of the following data:  

1. Rainfall depth of the 5th day prior to the flow rate measurement date 

2. Rainfall depth of the 6th day prior to the flow rate measurement date  

3. Rainfall depth of the 7th day prior to the flow rate measurement date 

4. Rainfall depth of the 13th day prior to the flow rate measurement date 

5. Rainfall depth of the 14th day prior to the flow rate measurement date 

6. Rainfall depth of the 15th day prior to the flow rate measurement date 

7. Mean precipitation of the month prior to the flow rate measurement date 
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8. Mean precipitation of the 2nd month prior to the flow rate measurement date 

9. Mean precipitation of the 3rd month prior to the flow rate measurement date 

10. Mean precipitation of the 6th month prior to the flow rate measurement date. 

Decision on the number of the neurons of the hidden layer was based on extensive trials. An outline of 
these trials appears in the next section, together with the results. 

4.3. Trials and results  

The first task was to construct an ANN that would forecast simultaneously the flow rate of both springs. 
Then, the output layer had two neurons, one for each flow rate. We divided the field data in two sets, one 
for training and one for testing, since their number is rather restricted (Hu et al., 2008; Jain et al., 2004).  
For training we used the 171 spring flow measurements of the first year, namely from April 16, 2007 to 
April 15 2008, during which measurements were more regular. The remaining 91 have been used for 
testing. 

We have conducted a large number of trials, regarding both the input data and the number of neurons of 
the hidden layer. The best results were achieved when the rainfall depth of the 5th, 6th, 7th, 13th, 14th and 
15th day, together with the mean precipitation of the 1st, 2nd and 3rd month  prior to the flow rate 
measurement date were used. For this input combination, the dependence of the RMSE on the number 
of neurons of the hidden layer Nh is shown in Table 1. 

Table 1. RMSE versus Nh (forecast of flow rate of both springs) 

Nh RMSE (Lit s-1) 

Mai Vryssi Pera Vryssi Mean 

1 0.875 1.243 1.059 

2 0.786 1.081 0.933 

3 0.804 1.002 0.903 

4 0.830 1.192 1.011 

5 0.838 1.036 0.937 

10 0.797 1.060 0.929 

12 0.829 0.966 0.898 

14 0.816 1.010 0.913 

18 0.815 0.981 0.898 

As shown in Table 1 RMSE was always larger for Pera Vryssi. It seems that ANN tends to approximate 
better the larger of the 2 flow rates. Moreover, it attained its minimum value for 12 and 2 neurons for 
Pera Vryssi and Mai Vryssi, respectively. This somehow affirmed information from local residents, that the 
two springs exhibit different behavior. 

Then we tried to develop an ANN separately for each spring. For Mai Vryssi best results (RMSE = 0.737 
Lit s-1) were achieved with the same input data and 4 neurons in the hidden layer. For Pera Vryssi best 
results (RMSE = 0.522 Lit s-1) were achieved with 10 neurons in the hidden layer and all of the input data 
(namely when the mean precipitation of the 6th month prior to the date of measurement was added, too). 
Again, best results for May Vryssi have been achieved with substantially fewer neurons in the hidden 
layer, compared to Pera Vryssi. While ANNs are black box models, one could try to relate their structure 
to physical processes (e.g. Govindaraju, 2000; Jain et al., 2004). In the case of Rouvas springs the 
aforementioned difference in the number of hidden layer neurons could be partially explained in the 
following way: As May Vryssi is fed by a comparatively larger area, local inhomogeneities are partially 
smoothed.   

Calculated versus measured flow rates for Pera Vryssi appear in Fig. 2. Flow rate values (in Lit s-1) appear 
on the y-axis, while the measurement number (starting from April 16, 2008) on the x-axis. It can be seen 
that the predicted values are generally smaller than the measured ones, but they follow a similar pattern. 
Visual inspection in this case verifies that the ANN performance is good. 
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Figure 2. Calculated versus measured flow rates of Pera Vryssi 

Moreover, since both springs have perennial flow, we checked whether some medium-term forecast is 
possible, using combinations of the aforementioned mean monthly precipitation values as input. Use of 
the mean precipitation of the first, second and third month prior to the date of measurement gave some 
acceptable results, namely RMSE = 0.746 Lit s-1 with 9 neurons in the hidden layer for Mai Vryssi and RMSE 
= 1.044 Lit s-1 with 6 neurons in the hidden layer for Pera Vryssi. 

Then we checked whether we could use seasonal data for ANN training. This approach failed for Pera 
Vryssi but gave very good results for Mai Vryssi with regard to the RMSE criterion), although available 
data for training and testing are few, namely 31 for the training set (from spring, 2007) and 48 for the test 
set). With 12 neurons in the hidden layer and the complete set of input data RMSE is equal to 0.406 
Lit s-1. Calculated versus measured flow rates for the season of spring appear in Fig. 3. A rather large 
discrepancy appears in measurements 38 to 46, which correspond to spring 2009. Data inspection shows 
that rain was much heavier in early 2009 than in 2007. The aforementioned discrepancy could be 
attributed then to the fact that data for the training period come from one year’s spring season only. 

 

Figure 3. Mai Vryssi: Calculated versus measured flow rates for the season of spring 
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Figure 4. Calculated versus measured flow rates of Pera Vryssi 
(based on flow rates of Mai Vryssi and precipitation data) 

Finally, we checked whether it was possible to forecast flow rate of one spring based on rainfall data and 
the flow rate of the other. This can be useful in practice, if access to certain springs is difficult. Despite our 
reservations, due to the different response of the two springs, we have achieved good results in 
forecasting the flow rate of Pera Vryssi, using as input the mean precipitation of the first, second, third 
and sixth month prior to the date of measurement, together with the flow rate of Mai Vryssi during the 
same day. As shown in Fig.4, calculated flow rate values follow the same pattern as the measured ones. 
The respective RMSE value is 0.447 Lit s-1 and has been achieved with 5 neurons in the hidden layer. 
 
5. Conclusions 
 
In our work we have tried to check ANN usefulness in providing predictions of karstic spring flow rates 
with restricted field data. For this reason, we have not used interpolation to artificially enrich the flow 
rate measurement set. Moreover, we have tried to get approximate, but comparatively early predictions, 
although karstic springs may respond rather quickly to rain events. Finally we have taken into account and 
we have evaluated soft information on spring behavior. The results that we have got led us to the 
following conclusions: 

1) Artificial neural networks can serve for approximate prediction of karstic spring flow rates, even if the 
training data set is short. Moreover, they can offer useful results, even if flow rate measurements are not 
very regular. 

2) Gross medium-term (e.g. one month) forecast could be achieved, at least for some perennial springs, 
as those studied in our paper. 

2) Extensive trials are needed to achieve good results. In our paper we have presented a rather small part 
of the total volume of trials. 

3) Different ANN structures can lead to comparable results. We have come to this conclusion, comparing 
our results with those presented in the literature, based on almost the same field data. 
4) Visual inspection of calculated versus measured flow rate diagrams could be combined with the RMSE 
criterion, in order to achieve better evaluation of the ANN results.  

5) Soft information on the behavior of springs could be useful in ANN construction. As an example, we 
have found out that the different behavior of the two springs, mentioned by residents of the area, was 
“verified” by the different structure of the ANNs that best fit the two springs. 
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Appendix: Precipitation and spring flow rate data 

date 

dd/mo/yr 

Precipi-

tation 

(mm) 

Mai Vryssi 

flowrate 

(Lit s-1) 

Pera Vryssi 

flowrate 

(Lit s -1) 

date 

dd/mo/yr 

Precipi-

tation 

(mm) 

Mai Vryssi 

flowrate 

(Lit s-1) 

Pera Vryssi 

flowrate 

(Lit s-1) 

20/09/2006 13,00   02/05/2008  4,725 2,359 

23/09/2006 2,50   07/05/2008  4,468 2,128 

10/10/2006 9,50   08/05/2008  4,495 2,101 

11/10/2006 12,00   09/05/2008  4,522 2,074 

12/10/2006 1,70   10/05/2008    

13/10/2006 5,00   11/05/2008 4,10   

15/10/2006 1,50   13/05/2008  4,403 1,928 

17/10/2006 68,00   14/05/2008  4,360 1,912 

18/10/2006 13,00   19/05/2008  4,336 1,853 

01/11/2006 25,00   20/05/2008  4,243 1,805 

02/11/2006 15,00   22/05/2008  4,287 1,788 

03/11/2006 130,00   26/05/2008  4,188 1,641 

05/11/2006 4,00   27/05/2008  4,211 1,642 

12/11/2006 32,50   30/05/2008  4,121 1,538 

14/11/2006 106,00   03/06/2008  4,052 1,499 

23/11/2006 14,00   09/06/2008  3,961 1,485 

http://dx.doi.org/10.1002/wrcr.20279
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24/11/2006 15,50   11/06/2008  3,925 1,439 

27/11/2006 0,70   24/06/2008  3,716 1,244 

06/12/2006 2,50   02/07/2008  3,643 1,164 

13/12/2006 9,00   08/07/2008  3,493 1,105 

19/12/2006 4,50   09/07/2008  3,491 1,127 

27/12/2006 3,50   14/07/2008  3,415 1,098 

03/01/2007 22,00   18/07/2008  3,401 1,112 

05/01/2007 3,00   23/07/2008  3,331 1,061 

13/01/2007 7,50   28/07/2008  3,255 1,039 

14/01/2007 26,00   01/08/2008  3,231 0,977 

20/01/2007 1,00   04/08/2008  3,224 0,988 

03/02/2007 7,00   06/08/2008  3,164 0,993 

05/02/2007 12,50   07/08/2008  3,216 0,979 

06/02/2007 9,00   11/08/2008  3,198 0,935 

12/02/2007 32,50   9/09/2008  2,801 0,764 

15/02/2007 3,00   15/09/2008  2,761 0,776 

17/02/2007 24,00   21/09/2008 16,00   

18/02/2007 22,50   22/09/2008  2,712 0,788 

25/02/2007 36,00   23/09/2008 4,00 2,705 0,804 

28/02/2007 14,50   24/09/2008  2,672 0,801 

10/03/2007 10,00   25/09/2008  2,669 0,801 

13/03/2007 14,00   29/09/2008 5,00 2,618 0,667 

21/03/2007 20,50   03/10/2008 1,00   

22/03/2007 13,00   12/10/2008 3,50   

24/03/2007 6,50   15/10/2008 3,00   

25/03/2007 11,00   21/10/2008  2,411 1,250 

11/04/2007 1,20   04/11/2008  2,353 0,546 

16/04/2007  3,397 2,197 17/11/2008  2,230 0,484 

17/04/2007 6,00 3,542 2,259 18/11/2008 8,00   

18/04/2007  3,542 2,284 23/11/2008 92,00   

19/04/2007  3,907 2,182 24/11/2008 19,00   

20/04/2007  3,921 2,160 25/11/2008 40,50   

24/04/2007  3,765 2,006 28/11/2008  2,842 0,517 

25/04/2007  3,599 2,030 10/12/2008  2,475 0,504 

26/04/2007  3,777 2,034 12/12/2008 4,50   

27/04/2007  3,832 2,029 14/12/2008 4,00   

30/04/2007  3,759 1,921 19/12/2008 3,00   

02/05/2007  3,556 1,877 20/12/2008 9,50   

04/05/2007  3,641 1,809 21/12/2008 6,00   

07/05/2007  3,561 1,747 22/12/2008 6,50   

08/05/2007  3,707 1,768 23/12/2008 89,50 2,387 0,818 

09/05/2007  3,526 1,739 24/12/2008 11,50   

10/05/2007  3,494 1,699 27/12/2008 38,50   

11/05/2007  3,456 1,660 28/12/2008 63,00   

14/05/2007  3,439 1,597 29/12/2008 1,50   

15/05/2007  3,379 1,564 03/01/2009 37,50   

16/05/2007  3,408 1,578 04/01/2009 38,00   

17/05/2007  3,389 1,582 05/01/2009 12,00   

18/05/2007  3,355 1,588 06/01/2009 5,00   

19/05/2007 22,00 3,409 1,642 07/01/2009 10,00 5,349 2,816 

20/05/2007 1,50   11/01/2009 5,00   

21/05/2007  3,379 1,537 14/01/2009  4,682 4,205 

22/05/2007 1,70 3,357 1,519 16/01/2009 1,00   

23/05/2007 11,00 3,335 1,500 18/01/2009 20,00   



MEASUREMENT AND PREDICTION OF KARSTIC SPRING FLOW RATES 267 

24/05/2007 1,50 3,401 1,488 23/01/2009 24,70   

25/05/2007 7,50 3,338 1,474 24/01/2009 21,00   

27/05/2007 3,40   25/01/2009 43,00   

28/05/2007 4,50   26/01/2009 34,50   

29/05/2007  3,276 1,416 28/01/2009 10,00   

30/05/2007  3,307 1,475 29/01/2009 25,00   

31/05/2007  3,267 1,417 30/01/2009 8,6 5,304 7,302 

01/06/2007  3,233 1,412 07/02/2009 16,00   

05/06/2007 2,50 3,199 1,325 08/02/2009 7,00   

06/06/2007 1,50 3,250 1,320 10/02/2009 11,00 5,337 6,995 

08/06/2007  3,253 1,318 11/02/2009 14,00   

13/06/2007  3,166 1,270 12/02/2009 32,00   

14/06/2007  3,169 1,257 13/02/2009 7,00   

15/06/2007  3,148 1,257 16/02/2009 9,00   

18/06/2007  3,150 1,230 18/02/2009 5,00 5,503 7,430 

19/06/2007  3,109 1,199 19/02/2009 6,50   

21/06/2007  3,105 1,193 21/02/2009 3,00   

22/06/2007  3,112 1,186 24/02/2009 51,00   

26/06/2007  3,015 1,172 25/02/2009 13,00   

27/06/2007  3,078 1,158 26/02/2009 3,50   

28/06/2007  3,043 1,105 01/03/2009 6,5 5,613 9,091 

02/07/2007  3,030 1,091 08/03/2009 12,00   

03/07/2007  3,023 1,058 09/03/2009 3,00   

06/07/2007  3,003 1,038 13/03/2009 14,00 5,586 8,750 

09/07/2007  2,940 1,048 21/03/2009 3,00   

11/07/2007  2,927 1,048 23/03/2009 2,00   

12/07/2007  2,928 1,026 24/03/2009  5,500 5,394 

13/07/2007  2,908 1,039 27/03/2009 12,00   

17/07/2007  2,856 0,976 05/04/2009 24,00   

20/07/2007  2,836 0,940 06/04/2009 11,00 5,355 4,328 

23/07/2007  2,871 0,938 07/04/2009 7,00   

24/07/2007  2,842 0,945 08/04/2009 10,00   

25/07/2007  2,837 0,923 20/04/2009 0,80   

26/07/2007  2,821 0,918 22/04/2009 4,60   

30/07/2007  2,788 0,885 23/04/2009 0,20 5,419 3,458 

31/07/2007  2,796 0,887 04/05/2009 21,10   

01/08/2007  2,777 0,930 07/05/2009  5,238 2,833 

07/08/2007  2,720 0,870 14/05/2009  5,247 2,601 

08/08/2007  2,747 0,868 18/05/2009 9,10   

27/08/2007  2,601 0,000 21/05/2009  5,381 2,453 

29/08/2007  2,509 0,781 29/05/2009  5,289 2,132 

31/08/2007  2,515 0,697 12/06/2009  5,249 1,817 

04/09/2007  2,521 0,699 17/06/2009  5,066 1,680 

05/09/2007  2,489 0,706 20/06/2009  5,048 1,647 

06/09/2007  2,486 0,717 25/06/2009  5,057 1,520 

10/09/2007  2,435 0,703 02/07/2009  5,063 1,514 

13/09/2007  2,435 0,703 07/07/2009  5,012 1,412 

17/09/2007  2,399 0,705 15/07/2009  4,963 1,327 

20/09/2007  2,378 0,698 31/07/2009  5,059 1,198 

21/09/2007  2,424 0,712 05/08/2009  4,888 1,067 

25/09/2007  2,370 0,696 14/08/2009  4,850 1,049 

27/09/2007  2,350 0,690 02/09/2009  4,736 0,937 

28/09/2007  2,367 0,695 08/09/2009 2,10   

02/10/2007  2,328 0,684 10/09/2009 10,20   
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03/10/2007  2,330 0,684 11/09/2009 50,40   

08/10/2007  2,291 0,673 14/09/2009 0,30   

10/10/2007  2,296 0,674 18/09/2009  4,705 0,865 

11/10/2007  2,287 0,672 25/09/2009 0,50   

14/10/2007 1,00 2,259 0,631 05/10/2009 15,30 5,225 0,857 

15/10/2007 31,00 2,232 0,589 14/10/2009 14,60   

16/10/2007 3,00 2,239 0,600 17/10/2009 0,80   

18/10/2007  2,247 0,629 18/10/2009 0,30   

21/10/2007 30,00   20/10/2009  4,503 0,763 

22/10/2007 47,00 2,227 0,613 28/10/2009 0,20   

23/10/2007 43,00 2,272 0,671 29/10/2009 0,30   

24/10/2007 23,00 2,359 0,681 30/10/2009 20,30 4,854 0,801 

25/10/2007 1,50 2,445 0,692 31/10/2009 2,70   

26/10/2007  2,491 0,643 01/11/2009 2,40   

29/10/2007  2,665 0,593 02/11/2009 5,60   

30/10/2007  2,672 0,593 03/11/2009 37,40   

01/11/2007  2,652 0,613 04/11/2009 13,80   

05/11/2007  2,572 0,625 08/11/2009 18,50   

06/11/2007 11,00 2,529 0,615 09/11/2009  4,700 0,902 

08/11/2007 7,50   11/11/2009 16,30   

09/11/2007 1,70   12/11/2009 5,00 4,793 1,039 

10/11/2007 15,00 2,442 0,633 20/11/2009  4,781 1,245 

11/11/2007 2,00   01/12/2009  4,125 1,097 

12/11/2007  2,354 0,651 02/12/2009 34,50   

13/11/2007 13,00 2,348 0,650 03/12/2009 18,10   

14/11/2007 8,30 2,318 0,665 04/12/2009 1,40   

15/11/2007 5,00   05/12/2009 29,10   

16/11/2007  2,312 0,698 06/12/2009 8,80   

18/11/2007 7,00   09/12/2009 2,10   

19/11/2007 7,00 2,339 0,706 10/12/2009 15,20   

20/11/2007 3,00 2,365 0,679 11/12/2009 23,30   

21/11/2007 1,50 2,362 0,678 12/12/2009 32,50   

23/11/2007  2,393 0,663 14/12/2009  5,355 1,790 

27/11/2007  2,402 0,633 15/12/2009 0,60   

28/11/2007  2,402 0,633 16/12/2009 14,70   

30/11/2007  2,413 0,653 17/12/2009 4,00   

01/12/2007 2,50   18/12/2009 36,50   

03/12/2007  2,402 0,705 19/12/2009 0,80   

04/12/2007 1,70 2,415 0,709 20/12/2009 4,00   

05/12/2007 8,20 2,409 0,771 27/12/2009  4,865 2,779 

06/12/2007 6,50 2,402 0,834 10/01/2010 1,00   

07/12/2007  2,422 0,778 11/01/2010 1,40   

09/12/2007 4,00 2,699 1,010 12/01/2010 25,30   

10/12/2007 37,30   13/01/2010 3,00   

11/12/2007 70,50 2,975 1,243 14/01/2010 51,30   

12/12/2007 34,00 3,584 1,355 16/01/2010 8,80   

13/12/2007 9,00 4,194 1,468 17/01/2010 23,20   

14/12/2007 2,50 4,860 1,480 18/01/2010 9,40   

15/12/2007 1,50   19/01/2010  4,884 3,538 

17/12/2007 1,00 5,323 2,864 20/01/2010 3,20   

18/12/2007  5,105 3,265 21/01/2010 20,30   

19/12/2007  4,886 3,666 22/01/2010 60,10   

20/12/2007  4,711 3,598 29/01/2010 2,60   

21/12/2007  4,535 3,530 01/02/2010 1,90   
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27/12/2007  3,469 2,807 02/02/2010 0,50 4,844 3,508 

28/12/2007  3,362 2,734 03/02/2010 0,30   

29/12/2007    06/02/2010 1,90   

30/12/2007    07/02/2010 31,00   

31/12/2007    08/02/2010 17,00   

01/01/2008 14,50   11/02/2010 1,40   

02/01/2008  2,949 2,413 14/02/2010  4,852 3,752 

03/01/2008  2,884 2,392 20/02/2010 12,80   

07/01/2008  2,698 2,229 21/02/2010 8,50   

08/01/2008  2,640 2,182 02/03/2010  4,864 4,108 

09/01/2008 1,00 2,630 2,156 14/03/2010 0,30 4,701 4,396 

10/01/2008  2,641 2,113 17/03/2010 2,10   

14/01/2008 3,00   18/03/2010 2,20   

15/01/2008 16,00 2,486 1,979 25/03/2010 0,20   

21/01/2008  2,370 1,844 11/04/2010 0,30   

22/01/2008  2,348 1,822 21/04/2010 0,50   

23/01/2008  2,345 1,821 22/04/2010 6,40   

24/01/2008 23,50 2,343 1,820 25/04/2010 0,30   

25/01/2008 38,50 2,372 1,852 01/06/2010 0,20   

29/01/2008  2,432 1,899 10/06/2010 11,50   

30/01/2008 28,00 2,493 1,946 13/06/2010 0,30   

01/02/2008  2,597 1,973 14/06/2010 12,80   

04/02/2008  2,731 2,143 16/06/2010 1,90   

07/02/2008 5,50 2,724 2,253 17/06/2010 9,00   

08/02/2008 8,00 2,842 2,461 19/06/2010 10,70   

09/02/2008 45,00 2,960 2,669 21/06/2010 0,80   

10/02/2008 13,00 3,077 2,878 26/06/2010 16,80   

11/02/2008 44,00 3,195 3,086 27/06/2010 11,00   

12/02/2008 0,50 3,676 3,300 28/06/2010 9,60 4,212 0,719 

13/02/2008  4,213 3,593 02/07/2010 0,30   

14/02/2008  4,520 4,542 12/07/2010 32,90 4,480 1,694 

17/02/2008 17,50 4,7 5,772 13/07/2010 7,70   

20/02/2008 13,00 4,880 7,001 15/07/2010 8,00   

25/02/2008  5,453 9,912 17/07/2010 0,30   

26/02/2008  5,559 9,925 19/07/2010  4,978 3,799 

27/02/2008  5,664 9,937 24/07/2010 0,50   

03/03/2008  5,483 7,712 25/07/2010 10,70   

04/03/2008  5,614 7,358 09/08/2010 5,00   

05/03/2008  5,486 7,106 10/08/2010 10,00   

12/03/2008 14,50   11/08/2010 30,00   

13/03/2008  5,192 5,085 13/08/2010 8,70   

15/03/2008  5,104 4,765 15/08/2010 41,90 4,626 1,100 

17/03/2008  5,097 4,481 16/08/2010 14,50   

18/03/2008  4,955 4,293 02/10/2010 0,20   

20/03/2008  5,075 4,104 11/10/2010 11,50   

22/03/2008  4,988 3,942 14/10/2010 0,30   

24/03/2008  4,901 3,779 15/10/2010 12,80   

27/03/2008  4,381 3,231 17/10/2010 1,90   

28/03/2008 5,50   18/10/2010 9,00   

29/03/2008 1,50 4,617 3,333 20/10/2010 10,70   

30/03/2008 7,00   22/10/2010 0,80   

31/03/2008  4,853 3,435 27/10/2010 16,80   

02/04/2008  4,848 3,303 28/10/2010 11,00   

03/04/2008 32,50   29/10/2010 9,60 4,212 0,719 
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04/04/2008 6,00 4,843 3,170 02/11/2010 0,30   

05/04/2008 12,50   12/11/2010 32,90 4,480 1,694 

07/04/2008  4,886 3,120 13/11/2010 7,70   

09/04/2008  4,940 3,056 15/11/2010 8,00   

11/04/2008  4,403 2,031 17/11/2010 0,30   

13/04/2008  4,626 2,425 19/11/2010  4,978 3,799 

15/04/2008  4,849 2,819 24/11/2010 0,50   

16/04/2008  4,884 2,737 25/11/2010 10,70   

18/04/2008  4,769 2,450 10/12/2010 5,00   

23/04/2008  4,654 2,418 11/12/2010 10,00   

27/04/2008 6,00   12/12/2010 30,00   

28/04/2008 10,00   14/12/2010 8,70   

29/04/2008  4,670 2,248 16/12/2010 41,90 4,626 1,100 

30/04/2008  4,690 2,086     

 


