ADSORPTION KINETICS OF DIRECT BLACK 38 ON NITROGEN-DOPED TiO$_2$

PAZ DIEGO S.
DOTTO GUILHERME L.*
MAZUTTI MARCIO A.
FOLETTO EDSON L.

Received: 15/04/2014
Accepted: 28/05/2014
Available online: 23/06/2014
*to whom all correspondence should be addressed: e-mail: guilherme_dotto@yahoo.com.br

ABSTRACT
In this work, three samples of nitrogen-doped TiO$_2$ prepared at different calcination temperatures (400, 450 and 500 °C) were applied for the adsorption of Direct Black 38. Kinetic studies about the adsorption of Direct Black 38 on nitrogen-doped TiO$_2$ were performed under different initial dye concentrations (75-175 mg l$^{-1}$). Pseudo-first and pseudo-second order models were fitted with the experimental data. The results revealed that nitrogen-doped TiO$_2$ synthesized at 400 °C presented the more adequate characteristics for adsorption purposes, such as specific surface area of 151 m2 g$^{-1}$. The adsorption kinetics agreed with the pseudo-second order model, at initial dye concentrations from 75 to 175 mg l$^{-1}$. The maximum adsorption capacity predicted by the pseudo-second order model was 138.3 mg g$^{-1}$, and was obtained using nitrogen-doped TiO$_2$ synthesized at 400 °C. In summary, these results revealed that nitrogen-doped TiO$_2$ is a good material for the removal Direct Black 38 from aqueous solutions by adsorption.

Keywords: adsorption capacity, colored effluents, dye, pseudo-second order model.

1. Introduction
Traditional textile dyeing processes generate a large amount of colored effluents, because about 100 L of water are required to process 1 kg of dyed fabrics. These effluents are difficult to treat once the industrial textile dyes have been designed and synthesized to be highly resistant to washing, chemical agents, including solvents, and environmental factors (Uçar and Pazarlioglu, 2008). Due to the synthetic origin, recycling nature, as well as, complex aromatic structure, Direct Black 38 is one of the problematic and resistant organic pollutants into the colored effluents (Kamboh et al., 2014). Since that the inadequate release of dye containing effluents causes a series of environmental impacts; these effluents should be carefully treated before discharge (Saltabaş et al., 2012). However, the conventional treatment methods are very expensive and the low cost technologies don’t allow a wishful colour removal and have certain disadvantages. Adsorption process has been found to be more effective method for the treatment of dye containing effluents. The most efficient and commonly used adsorbent is commercially activated carbon which is expensive and has regeneration problems (Verma and Mishra, 2010). In this way, the search for alternative adsorbents has gained attention (Verma and Mishra, 2010; El-Maghraby and El-Deeb, 2011; Saltabaş et al., 2012; Ramesh et al., 2014).
TiO$_2$ is regarded as the most efficient and environmentally benign photocatalyst. It has been most widely used for photodegradation of various pollutants and is expected to play an important role in...
solving many serious environmental and pollution challenges (Collazzo et al., 2012a; Li et al., 2014). In heterogeneous photocatalysis using TiO$_2$, it is reported that, an adsorption step of organic molecules occurs before the photocatalytic reaction (Bubacz et al., 2012; Collazzo et al., 2012a; Li et al., 2014). Thus, the knowledge of the adsorption phenomenon is very important for photocatalytic reactions. In a recent study, TiO$_2$ powder was prepared by a hydrothermal process and simultaneously tested for the adsorption and photodegradation of Direct Black 38 (Collazzo et al., 2012b). Surface area value of 113 m2 g$^{-1}$, and maximum adsorption capacity of 122 mg g$^{-1}$ were found by the authors (Collazzo et al., 2012b).

Based on the above mentioned, and in order to improve the adsorption characteristics of TiO$_2$, this work aimed to investigate the adsorption kinetics of Direct Black 38, a common dye used in tannery industry, on nitrogen-doped TiO$_2$. Firstly, nitrogen-doped TiO$_2$ samples were prepared at 400, 450 and 500 °C, and namely TiO$_2$N400, TiO$_2$N450 and TiO$_2$N500, respectively. These materials were then characterized according to the specific surface area, pore diameter and pore volume. After, kinetic studies were performed at different initial dye concentrations (75-175 mg l$^{-1}$). Pseudo-first and pseudo-second order models were used to interpret the experimental data.

2. Material and Methods

2.1 Preparation and characterization of nitrogen-doped TiO$_2$

Nitrogen-doped TiO$_2$ was synthesized according to Sun et al., (2008) and Paz et al., (2014). The samples were calcined at 400, 450 and 500 °C and namely TiO$_2$N400, TiO$_2$N450 and TiO$_2$N500, respectively. This temperature range was applied according to Sun et al., (2008) and Sun et al., (2009). The detailed procedures and reagents can be found in Paz et al., (2014). The synthesized samples, in a yellow powder form, were characterized by X-ray diffraction (shown in Paz et al., 2014), which presented only a crystalline anatase structure. Herein, these samples were characterized by specific surface area, pore diameter and pore volume. These characterizations were made by a volumetric adsorption analyzer (Quantachrome Instruments, New Win 2, USA) using the Bennett, Emmet and Teller (BET) method (Leyva-Ramos et al., 2012).

2.2 Adsorption experiments

Direct Black 38 (purity of 98%) (triazo dye, C.I. number 30235, molecular formula C$_{38}$H$_{38}$N$_6$O$_8$S$_3$Na$_2$ and molecular weight 781.7 g mol$^{-1}$) was employed as model molecule in this study. Stock solutions (1.0 g l$^{-1}$) (Moreira et al., 2005) were prepared and all subsequent tests were made by dilution of these solutions. For the three adsorbent samples (TiO$_2$N400, TiO$_2$N450 and TiO$_2$N500), the adsorption experiments were carried out using batch systems at different initial dye concentrations (75, 100, 125, 150 and 175 mg l$^{-1}$), optimum pH of 2.5 (Moreira et al., 2005), temperature of 25 °C and adsorbent dosage of 1.0 g l$^{-1}$. Firstly, 0.100 g of adsorbent was added into 100 ml of dye solutions with the desired initial concentration. The system was agitated at 100 rpm in a thermostated shaker (Fanem, 315 SE, Brazil) until the equilibrium. Aliquots were withdrawn in preset time intervals, centrifuged (Centribio, 80-2B, Brazil) and filtered in a PVDF membrane (0.22 µm). The remaining dye (Direct Black 38) concentration was determined by spectrophotometry (Spectro vision, T6-UV, Brazil) at λ_{max} = 590 nm. UV-vis absorption spectrum of Direct Black 38 aqueous solution at pH 2.5 was shown in a previous study (Moreira et al., 2005), and present one band in the visible region with its maximum located at 590 nm. All experiments were carried out in replicate (n = 2) and blanks were performed. Only the mean values were presented in the results (the maximum experimental error was 5.78%). The amount of dye adsorbed per gram of adsorbent, q_t (mg g$^{-1}$) at any time, t (min) was determined by the Equation 1:

$$q_t = \frac{C_0 - C_t}{m}V$$

where, C_0 is the initial dye concentration in liquid phase (mg l$^{-1}$), C_t is the dye concentration in liquid phase at time t (mg l$^{-1}$), m is the adsorbent amount (g) and V is the volume of solution (l).
2.3 Kinetic models

In solid-liquid adsorption systems, the kinetic study is fundamental. From the kinetic analysis, the solute uptake rate, which determines the residence time required for completion of adsorption process, may be established. This study explains how fast the adsorption occurs and also provides information on the factors affecting the process (Dotto and Pinto, 2012; Dotto et al., 2012; 2013). In this work, the pseudo-first and pseudo-second order models were fitted with the experimental data in order to elucidate the adsorption kinetic behavior of Direct Black 38 dye on nitrogen-doped TiO₂. The kinetic models of pseudo-first order (Lagergren, 1898) and pseudo-second order (Ho and McKay, 1998) are based in the adsorption capacity. The pseudo-first order model (Equation (2)) is generally applicable over the initial 20-30 min of the sorption process, while the pseudo-second order model (Equation (3)) is suitable for the whole range of contact time (Liu and Liu, 2008).

\[q_t = q_1 (1 - \exp(-k_1 t)) \]

\[q_t = \frac{t}{(1/k_2q_2^2) + (t/q_2)} \]

being, \(k_1 \) and \(k_2 \) the rate constants of pseudo-first order and pseudo-second order models, respectively, in (min⁻¹) and (g mg⁻¹ min⁻¹), \(q_1 \) and \(q_2 \) are the theoretical values for the adsorption capacity (mg g⁻¹). Furthermore, for the pseudo-second order model, the initial sorption rate, \(h_0 \) (mg g⁻¹ min⁻¹) can be defined by the Equation 4 (Ho and McKay, 1998):

\[h_0 = k_2q_2^2 \]

The kinetic parameters were determined by the fit of the models (Equations 2 and 3) with the experimental data through nonlinear regression using the Quasi-Newton estimation method. The calculations were carried out by the Statistic 7.0 software (Statsoft, USA). The fit quality and the accuracy of the kinetic parameters were measured through determination coefficient (R²) and average relative error (ARE) (El-Khaiary and Malash, 2011).

3. Results and discussion

3.1 Characteristics of nitrogen-doped TiO₂

The results of specific surface area (S\text{BET}), pore diameter and pore volume for TiO₂N400, TiO₂N450 and TiO₂N500 are shown in Table 1. Figure 1 shows the N₂ adsorption/desorption isotherms for (a) TiO₂N400, (b) TiO₂N450 and (c) TiO₂N500.

It was found in Table 1, that the specific surface area of TiO₂N400 was very higher than specific surface areas of TiO₂N450 and TiO₂N500. The pore diameter of TiO₂N400 was the same that TiO₂N450, and higher than the TiO₂N500. The pore volume of TiO₂N400 was in the same magnitude that TiO₂N450, and higher than the TiO₂N500. These results indicated that TiO₂N400 presented the more adequate characteristics for adsorption purposes. In general lines, the N₂ adsorption/desorption isotherms (Figure 1) were similar to the type IV isotherm, according to the IUPAC classification. This shows that the nitrogen-doped TiO₂ samples obtained in this work are predominantly mesoporous materials.

Table 1 Specific surface area (S\text{BET}), pore diameter and pore volume results

<table>
<thead>
<tr>
<th>Sample</th>
<th>S\text{BET} (m² g⁻¹)*</th>
<th>Pore diameter (nm)*</th>
<th>Pore volume (cm³ g⁻¹)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂N400</td>
<td>151 ± 3</td>
<td>3.48 ± 0.25</td>
<td>0.0119 ± 0.0009</td>
</tr>
<tr>
<td>TiO₂N450</td>
<td>49 ± 2</td>
<td>3.86 ± 0.28</td>
<td>0.0360 ± 0.0015</td>
</tr>
<tr>
<td>TiO₂N500</td>
<td>13 ± 2</td>
<td>2.62 ± 0.21</td>
<td>0.0003 ± 0.0001</td>
</tr>
</tbody>
</table>

*mean ± standard error (n=3).
Figure 1. N$_2$ adsorption/desorption isotherms for (a) TiO$_2$N400, (b) TiO$_2$N450 and (c) TiO$_2$N500
3.2 Kinetic analysis

In this work, kinetic curves for the adsorption of Direct Black 38 on TiO$_2$N400, TiO$_2$N450 and TiO$_2$N500 were obtained at different initial dye concentrations (75, 100, 125, 150 and 175 mg l$^{-1}$). These kinetic curves are shown in Figure 2.

![Kinetic curves for the adsorption of Direct Black 38 on TiO$_2$N400, TiO$_2$N450 and TiO$_2$N500 at different initial dye concentrations.](image)

Figure 2. Kinetic curves for the adsorption of Direct Black 38 on (a) TiO$_2$N400, (b) TiO$_2$N450 and (c) TiO$_2$N500 at different initial dye concentrations. (pH of 2.5, temperature of 25°C and adsorbent dosage 1 g l$^{-1}$)
It can be seen in Figure 2, for all kinetic curves, that the adsorption of Direct Black 38 on TiO$_2$N400, TiO$_2$N450 and TiO$_2$N500 was a fast process. It was found a fast increase in the adsorption capacity until 20 min. After this time, the adsorption rate decreased considerably, being the equilibrium attained at about 60 min (Figure 2). This information is particularly important for the treatment of colored effluents, because, the process (adsorption + photocatalysis) can be performed without illumination until 60 min. Similar trend was found by Collazzo et al., (2012b) in the adsorption of Direct Black 38 dye on TiO$_2$ prepared at low temperature.

Regarding the initial dye concentration effect, it was verified that an increase from 75 to 175 mg l$^{-1}$ caused an increase of two-three fold in the adsorption capacity (Figure 2). This occurred due to the higher driving force for adsorption at higher concentrations, which affects the external and internal mass transfer mechanisms (Dotto and Pinto, 2012; Leyva-Ramos et al., 2012). Similar trend was found by Fil et al. (2013) in the adsorption of Basic Red 18 on natural Turkish clay.

The pseudo-first and pseudo-second order models were fitted with the experimental data in order to elucidate the adsorption kinetic behavior of Direct Black 38 on nitrogen-doped TiO$_2$. The results are shown in Tables 2 (TiO$_2$N400), 3 (TiO$_2$N450) and 4 (TiO$_2$N500), respectively.

Table 2

<table>
<thead>
<tr>
<th>Initial dye concentration (mg l$^{-1}$)</th>
<th>Pseudo-first order model</th>
<th>Pseudo-second order model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q_1 (mg g$^{-1}$)</td>
<td>q_2 (mg g$^{-1}$)</td>
</tr>
<tr>
<td>75</td>
<td>48.5</td>
<td>51.5</td>
</tr>
<tr>
<td>100</td>
<td>71.4</td>
<td>75.2</td>
</tr>
<tr>
<td>125</td>
<td>93.1</td>
<td>97.6</td>
</tr>
<tr>
<td>150</td>
<td>113.8</td>
<td>118.5</td>
</tr>
<tr>
<td>175</td>
<td>132.7</td>
<td>138.3</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Initial dye concentration (mg l$^{-1}$)</th>
<th>Pseudo-first order model</th>
<th>Pseudo-second order model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q_1 (mg g$^{-1}$)</td>
<td>q_2 (mg g$^{-1}$)</td>
</tr>
<tr>
<td>75</td>
<td>49.2</td>
<td>52.9</td>
</tr>
<tr>
<td>100</td>
<td>68.5</td>
<td>72.5</td>
</tr>
<tr>
<td>125</td>
<td>82.2</td>
<td>86.9</td>
</tr>
<tr>
<td>150</td>
<td>103.9</td>
<td>108.2</td>
</tr>
<tr>
<td>175</td>
<td>125.5</td>
<td>129.8</td>
</tr>
</tbody>
</table>
Table 4 Kinetic parameters for the adsorption of Direct Black 38 on TiO$_2$N500.

<table>
<thead>
<tr>
<th>Initial dye concentration (mg l$^{-1}$)</th>
<th>75</th>
<th>100</th>
<th>125</th>
<th>150</th>
<th>175</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudo-first order model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_0 (mg g$^{-1}$)</td>
<td>48.8</td>
<td>60.5</td>
<td>78.1</td>
<td>91.3</td>
<td>116.0</td>
</tr>
<tr>
<td>k_1 (min$^{-1}$)</td>
<td>0.241</td>
<td>0.294</td>
<td>0.324</td>
<td>0.526</td>
<td>0.559</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9883</td>
<td>0.9805</td>
<td>0.9822</td>
<td>0.9899</td>
<td>0.9883</td>
</tr>
<tr>
<td>ARE (%)</td>
<td>2.92</td>
<td>3.70</td>
<td>3.44</td>
<td>2.49</td>
<td>2.74</td>
</tr>
<tr>
<td>Pseudo-second order model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_0 (mg g$^{-1}$)</td>
<td>52.1</td>
<td>64.3</td>
<td>82.6</td>
<td>94.6</td>
<td>120.0</td>
</tr>
<tr>
<td>k_2 (g mg$^{-1}$ min$^{-1}$)</td>
<td>0.0078</td>
<td>0.0082</td>
<td>0.0072</td>
<td>0.0133</td>
<td>0.0115</td>
</tr>
<tr>
<td>h_0 (mg g$^{-1}$ min$^{-1}$)</td>
<td>21.19</td>
<td>34.08</td>
<td>49.52</td>
<td>119.51</td>
<td>165.67</td>
</tr>
<tr>
<td>R^2</td>
<td>0.9896</td>
<td>0.9977</td>
<td>0.9981</td>
<td>0.9995</td>
<td>0.9991</td>
</tr>
<tr>
<td>ARE (%)</td>
<td>2.60</td>
<td>1.19</td>
<td>1.01</td>
<td>0.51</td>
<td>0.65</td>
</tr>
<tr>
<td>q_e exp (mg g$^{-1}$)</td>
<td>50.6</td>
<td>63.6</td>
<td>80.9</td>
<td>95.0</td>
<td>119.1</td>
</tr>
</tbody>
</table>

The high values of the determination coefficient ($R^2>0.9887$) and the low values of average relative error (ARE < 2.70%) presented in Tables 2, 3 and 4, demonstrated that the pseudo-second order model was the more adequate to represent the adsorption of Direct Black 38 on nitrogen-doped TiO$_2$. This fact is corroborated, since the pseudo-second order model predicted very well the experimental equilibrium adsorption capacity (q_e) with maximum error of 3%, while, the pseudo-first order model underestimated the q_e exp values in all cases (Tables 2, 3 and 4).

From Tables 2 (TiO$_2$N400), 3 (TiO$_2$N450) and 4 (TiO$_2$N500), it was observed that the equilibrium adsorption capacity predicted by the pseudo-second order model (q_e) increased as a function of the initial dye concentration increase. For all adsorbents, the maximum values for q_e were found at 175 mg l$^{-1}$. This occurred because at high initial dye concentrations, more dye is transferred from the bulk solution to the adsorbent surface, and so, more dye molecules occupies the adsorption sites (since that, in the concentration range of this work, the monolayer saturation was not attained). Another fact in relation to the q_e values at 175 mg l$^{-1}$ is the following: q_0 of TiO$_2$N400> q_0 of TiO$_2$N450> q_0 of TiO$_2$N500. This behavior can be explained on the basis in the specific surface area values of the adsorbents (Table 1), which presented the same dependence. According to Ruthven (1984), the adsorption capacity is directly proportional to the specific surface area of the adsorbent. Based on these results it can be concluded that nitrogen-doped TiO$_2$ synthesized at 400 °C presented the more adequate characteristics for adsorption purposes, such as specific surface area of 151 m2 g$^{-1}$ and adsorption capacity of 138.3 mg g$^{-1}$.

The initial sorption rate (h_0) (Tables 2, 3 and 4) values increased with the initial dye concentration. This shows that, at the initial stages of the adsorption process, more dye was faster adsorbed at higher initial dye concentrations. Similar results were found by Cardoso et al., (2012) in the adsorption of Reactive red 120 on activated carbon and *Spirulina platensis*. Finally, any clear tendency was noted regarding to the k_2 parameter (Tables 2, 3 and 4).

4. Conclusions

In this work, the adsorption kinetics of Direct Black 38 dye on nitrogen-doped TiO$_2$ was studied. Firstly, nitrogen-doped TiO$_2$ samples were prepared at 400, 450 and 500 °C, aiming to improve its adsorption characteristics. After, adsorption kinetic studies were carried out to verify the behavior of nitrogen-doped TiO$_2$. From the results, it was found that the nitrogen-doped TiO$_2$ samples obtained in this work were predominantly mesoporous materials, and the specific surface areas were 151, 49 and 13 m2 g$^{-1}$, respectively, for TiO$_2$N400, TiO$_2$N450 and TiO$_2$N500. This indicated that nitrogen-doped TiO$_2$ synthesized at 400 °C presented the more adequate characteristics for adsorption purposes. The kinetic curves presented a fast increase in the adsorption capacity until 20 min, being the equilibrium attained at
about 60 min. The values of R^2 and ARE demonstrated that the pseudo-second order model was the more adequate to represent the adsorption of Direct Black 38 on nitrogen-doped TiO$_2$. The maximum adsorption capacity was 138.3 mg g$^{-1}$, and was obtained using nitrogen-doped TiO$_2$ synthesized at 400 °C. In brief, these results revealed that nitrogen-doped TiO$_2$ is a good material for the treatment of colored effluents, since that, before its photocatalytic action, a considerable amount of dye are adsorbed.

Acknowledgments

The authors would like to thank CAPES (Coordination for the Improvement of Higher Education Personnel) and CNPq (National Council for Scientific and Technological Development) for the financial support.

References

