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ABSTRACT 

The structure of the wind turbines nowadays is a critical element due to their importance from the 
reliability, availability, safety, and cost points of view. This is more relevant when the offshore wind 
turbine is considered. This paper introduces a novel design of a Fault Detection and Diagnosis (FDD) 
model based on ultrasound technique. The FDD model will be able to detect fault/failures via the pulse-
echo technique. The pulse-echo is got via piezoelectric transducers that are also employed as sensors. 
The signal processing is based on two steps. Firstly, a wavelet transform is applied to the measured 
signals with filtering purposes, in order to enhance the signal to noise ratio. Secondly, a time series 
modeling approach, as an autoregressive with exogenous input model, is employed for pattern 
recognition by minimizing the Akaike information criterion. An experimental platform is proposed to 
test the procedure, where pulse-echo experiments were employed before and after a fault occurred. 
The results from this paper lead to the identification of an early indication of structural problems 
induced by internal (material, shape, age, etc.) and external (temperature, humidity, pressure, etc.) 
factors. The model can anticipate catastrophic faults, reducing the preventive/corrective tasks and costs, 
etc, and increasing the availability of the wind turbine, and therefore the energy production. 

Keywords: Signal processing, transfer function, condition monitoring, wavelet transform, ARX models, 
fault detection and diagnosis, ultrasounds. 

 
 
1. Introduction 

 
Non-destructive testing (NDT) has become an essential technique for the development of structure 
health monitoring (SHM) systems. NDT use is increasing in many scientific and industrial fields, from 
wind energy production (García et al., 2012) to the transportation of gases and liquids (Llamas et al., 
2014). The NDT progress depends on the continuous changes of the industry to suit the current 
scenarios. The benefits that these new techniques provide are related to the improvement of the 
product quality, public safety and especially the prevention of faults. The main consequence is the 
reduction of costs, since they can anticipate faults that involve both material and human losses to 
reduce the corrective/preventive maintenance tasks, and to increase the life cycle of the structure. 
Other advantages that they present are related to the forecasting analysis based on the data acquired in 
a real-time mode, as well as the establishment of FDD techniques. 
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Within the NDT field, guided ultrasonic waves are one of the most prominent areas of exploitation. 
These waves are especially useful in geometries such as plates or tubes, since their finite geometry 
enables energy flow through transversal sections. These waves can travel long distances, allowing 
inspections of large areas without any relocation of the actuator, as in classical ultrasonic methods (Dai 
et al., 2014). 

Ultrasonic waves are particularly appropriate for the monitoring of inaccessible areas, e.g. partially 
buried structures, isolated materials, corrosive atmospheres or structures under the sea. The absence of 
risks for the operator, equipment portability, and the achievement of fast results are also factors to be 
considered (Wang et al., 2010). 

The purpose of this paper is to design a FDD model using ultrasound inputs in conjunction with 
advanced signal processing methods to monitor the structural assessment of wind turbines. This system 
will be able to detect faults or structural modifications e.g. scratches, cuts, changes in thickness or edges 
by identifying pattern changes in the pulse-echo signals. Note that pattern changes are associated to the 
aforementioned potential faults. The signal processing is based on the wavelet transform as a filtering 
technique and an autoregressive exogenous (ARX) model to estimate potential faults, where the 
exogenous variable is the input signal. An experimental platform is designed in order to illustrate the 
results. A steel plate is used as a test bed. The plate features may simulate the behavior of certain parts 
of wind turbines.  

The article is organized as follows: Section 2 describes the experimental platform. Section 3 introduces 
the wavelet and ARX models. Experimental results are detailed in Section 4.  Section 5 proposes a 
framework to diagnose the different kind of faults; and finally, the main conclusions are drawn in 
Section 6. 
 
2. Laboratory platform 

 
Different experiments were carried out in an experimental platform to obtain the proposed FDD. The 
platform (see Figure 1) consists of a device that is able to read and generate signals at 4 MS s-1. The 
device is connected to a PC for condition monitoring. The output signal from the device goes through an 
amplifier to drive the piezoelectric transducers. The high frequency amplifier is used to enhance the 
signal to noise ratio. In this particular case, the Hanning window is employed for the pulse inputs. The 
main advantage of the Hanning window is its low aliasing and loss of resolution. Furthermore, it reduces 
the generation of side lobes in its frequency spectrum.  

The piezoelectric transducers used are macro-fiber composites (MFC) working as actuators and sensors. 

 

Figure 1. Laboratory NDT 

The experiment procedure can be summarized as follows: a Hanning pulse is generated from the 
computer and sent to the MFC. It emits a pulse in the form of vibrations that flow through the structure 
to be inspected and is read by the other MFCs. This technique is called the transmission method (Chen, 
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2010). If there is a defect, for example a crack in the transmission direction of the wave, a reflection of 
part of the wave is received, and therefore, the delay in the wave transmission will be reduced and the 
piezoelectric sensor will detect that imperfection.  
 
3. Models 

 
The methodology to identify defects can be divided in two steps. Firstly, in order to enhance the signal 
to noise ratio and to avoid noise at different frequencies, a pre-filtering step based on a wavelet 
transform is proposed. Secondly, an ARX model is estimated to predict the output response for the 
baseline condition. This predicted output response can then be compared to the actual response 
measured during other experiments to determine whether a significant variation between both signals 
is present. In case that difference is important, the system is assumed to have changed in such a way 
that faults may be present (Light-Marquez et al., 2010). The rest of the section is devoted to introducing 
the wavelet and ARX methods, respectively. 

3.1 Wavelet transform 

Wavelet transform is a powerful tool applied to time and frequency domain analysis with the use of 
several decomposition coefficients at different frequency bands (Eristi, 2013). It leads to work with high 
and low frequencies, identifying spectral features, unusual temporary files, and lack of stationary and 
removing random noise (Dong et al., 2010). The wavelet transform improves the limitations of 
resolution; and the loss of information presented by the Short-Time Fourier Transform or the Fast 
Fourier Transform (Jia et al., 2003; Morsi et al, 2010). 

Wavelet transforms are commonly categorized as continuous wavelet transforms (CWT), discrete 
wavelet transforms (DWT) or wavelet packet transforms (PWT) among others. Regardless of the 
categorization, all these types emerge from what is known as mother wavelet, which is given by the 
equation (1).  

 s, (t) (
1

√s
) (

t  

s
) (1) 

where s is the scale factor, and τ is the translational factor. The wavelet transform Wf(s, ) of a function 
f(t) is the decomposition of f(t) in a set of functions forming a base with the conjugate of the mother 
wavelet (ψ*

s, (t)). It is defined in equation (2): 

  (s, ) ∫  (t)ψ 
s, (t)dt (2) 

The most recurrent families of wavelet transforms are Haar, Daubechies or Symlet transforms. The 
selection of a particular family can be set by the application where the wavelet is introduced. 
Daubechies wavelets are the most used wavelets, representing the foundations of wavelets signal 
processing. Daubechies wavelets lead more accurate results in comparison to other families (Patil et al., 
2011; Genovese et al., 2008).                                                                              

Research into leak detection in plastic pipes from acoustic emission signals (Ahadi et al., 2010), cracks 
(Ye et al., 2010) or evaluation of the corrosion on non-accessible pipes can be found (Acciani et al., 
2010) based on wavelet transforms.  

3.2 Arx 

Time series methods have been previously employed for failure prediction and detection. For instance, 
(Garcia et al., 2010) and (Pedregal et al., 2010) utilize a VARMA (vector auto-regressive moving-average) 
and harmonic regressions, respectively, for failure prediction in railway elements. Here, an ARX model is 
proposed to identify faults in wind turbines elements. Basically, an ARX model can be expressed by a 
linear difference equation, such as (3): 

yt a1y1   anayt na b1ut n    bnbut n  nb 1  t (3) 
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where AR refers to the autoregressive part and X to the extra input, sometimes called the exogenous 
variable. The parameters na and nb are the orders of the ARX model, and nk is the number of input 
samples that occur before the input affects the output, also called the delay in the system (Ljung, 2010). 
The variables yt and ut stand for the output and input responses, respectively. Model orders na, nb and nk 
have been chosen by minimizing the A ai e’s In ormation Criterion (AIC) (A ai e, 1974). Model selection 
and the estimation of the unknown parameters ai, i 1, ,na and bj, j 1, ,nb have been done by means of 
the routines implemented in the MATLABTM System Identification toolbox (Ljung, 2012). 
 
4. Experimental results 

 
To achieve the objectives of the case study, several experiments on a free fault plate are carried out. 
They are then repeated after making a cut over the entire thickness of the plate. Distances and 
measurement conditions remain unchanged in order to analyse the behaviour of the material in both 
circumstances. 

The square steel plate has a length of 106 cm2 and a thickness of 1.2 mm. Three MFC transducers are 
located as shown in Figure 2. The first sensor located at 14 cm from the left extreme acts as actuator; 
and the remaining as sensors. The emitted signal will be a Hanning pulse at 25 kHz, 2 cycles and a 
sampling time of 40,000 samples per second (see Figure 3). The input frequency is set to 25 kHz to 
achieve a compromise between good response and MFC limitations when they work as actuators. 
Additionally, the pulse is composed of two cycles, in order to create a narrow pulse and to avoid 
undesired overlaps between the emitted pulse and the first received echoes.  

The received signals are recorded and the pattern between both sensors is analysed. Next, the different 
cuts between the second and the third sensor are made as is depicted in the right panel of Figure 2. 
Then, the same input signal is applied to determine how the pattern has changed with regards to the 
initial fault-free experiment. 

 
 

Figure 2. Actuator and sensors placement (left). Zoom of the cut (right) 

It should be pointed out that the ARX model uses as input u in (3) the observations measured in the 
sensor 1 (25 cm to the right of the actuator) and as output the sensor 2 closer to the right extreme.  

A MATLABTM code is implemented to pre-filter the signals. The inputs are the two original signals 
received by the sensors and the outputs are the filtered signals. The process is carried out by the 
discrete wavelet transform (DWT). DWT introduces a scale discretization given by equation (4) to reduce 
the redundant information from the continuous changes of the scale and translational parameters: 

  (i,j) 
1

√2i
∫  (t)ψ (

t j2i

2i
)dt (4) 

where s=2i and  =k2i are dyadic scales. 

 

8.5 cm 
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Figure 3. Hanning pulse at 25 KHz with 2 cycles 

The chosen family is the Daubechies wavelet transform. This is due to its versatility for processing 
signals presenting certain characteristics such as changes in shape and amplitude, obtaining more 
precise results than other wavelet families. An example of the signals without and with filtering is 
depicted in Figure 4. The technique also prevents border limitations, scaling errors or fidelity with a 
proper accuracy in the results. The approach is intended to avoid any type of noise complexity 
associated to the signal to be analysed. 

 

Figure 4. Unfiltered (left) vs. filtered signal (right) 

To identify the ARX orders and to estimate their respective parameters, two experiments were carried 
out for the free-fault plate. The data of the first experiment was employed to identify and estimate an 
ARX model with na=17; nb=13 and nk=20, by minimizing the AIC criterion. The second experiment was 
used to validate the previous estimation. 

Figure 5 shows the measured observations of that experiment validation, where the sensor 2 
measurements are in solid line and the 20 step ARX model predicted output in dashed line. The Root 
Mean Squared Error (RMSE) associated to this predicted output is 2.27*10-4. 
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Figure 5. Measured (solid line) and 20 step predicted output (dashed line) for the free-fault case 

As previously mentioned, the same input showed in Figure 3 was applied after a cut was made into the 
plate. Figure 6 shows again the measured and 20 step predicted output in solid and dashed line, 
respectively. However, in this case the model previously estimated is not adequate to reproduce the 
measured observations as a consequence of the fault. In fact, the RMSE is 4.45*10-4 which is significantly 
higher than the RMSE computed when no fault was present in the plate. 

 

Figure 6. Measured (solid line) and 20 step predicted output (dashed line) 
when a fault has occurred 

 
5. Fault diagnosis 
 
The last section showed that the model proposed was able to detect a fault if a high RMSE was found in 
relation to the fault-free situation. Nonetheless, it would be more appealing from a practical point of 
view to be capable of detecting the potential fault before the complete system failure. In that sense, a 
third experiment has been designed, where the plate was partially cut (8.5 cm long x 0.6 mm deep). 
Unlike the previous experiment, the plate was not cut over the entire thickness.  

Figure 7 displays the RMSE found for each sensor. Upper and lower plot refer to the RMSE calculated for 
the sensor 1 and 2 (see sensor placement in Figure 2), respectively. Note that the RMSE was computed 
with respect to the free-fault experiment. Each bar in the figure corresponds to the average of the three 
experiments carried out under each condition. In other words, the fault-free experiment was repeated 
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three times and the average RMSE was computed. Likewise, the early stage experiment (partial cut) was 
repeated three times. The average RMSE was calculated and the same procedure was applied to the 
crack case (entire thickness cut). The lower plot shows that the second and third bar provides a higher 
RMSE than the free-fault case. Therefore, the model is capable of detecting a fault or potential fault. 
Nevertheless, in order to distinguish whether the fault is at an early stage or it corresponds to a 
complete failure; the RMSE provided by the sensor 1 needs to be analyzed. Recall that the RMSE of the 
sensor 1 is the average of the RMSE computed with respect to the fault-free measured output of the 
same sensor 1. Here, it should be pointed out that the sensor 1 RMSE is similar to the fault-free RMSE 
when a fault is at an early stage, whereas the RMSE is higher than the other two cases when a complete 
fault is present.  

In summary, the results of sensor 2 inform about the presence of a fault in the structure, however, in 
order to distinguish whether that fault is at an early stage or a complete failure, information from sensor 
1 should be analyzed. If RMSE in sensor 1 is higher than the fault-free RMSE a complete fault is found. 
Otherwise an early stage fault is emerging and maintenance activities should be carried out. 

 

Figure 7. Root Mean Squared Error found for sensor 2 (upper plot) and 
sensor 1 (lower plot) between the measured sensor output and the free-fault baseline 

In order to interpret these results, it is interesting to plot the measured output of sensor 2 (Figure 8) and 
sensor 1 (Figure 9) for each type of fault. When the plate starts to crack, Figure 8 shows how a delay in 
the sensor 2 early stage fault signal appears with respect to the free-fault case. However, when the 
plate suffers a complete crack, the sensor 2 does not receive the input signal and it mainly measures 
noise. 

 

Figure 8. Sensor 2 measured signal for the free-fault (solid line), 
early stage (dashed line) and crack (dotted line) cases 
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In addition to the information provided by sensor 2, it is important to analyze the sensor 1 output. 
Figure 9 shows when an early stage fault is present, how the signal goes through the material, and that 
the difference with respect to the fault-free test is negligible. On the other hand when the plate is 
completely cracked, the input signal does not go through the material and it is echoed back, yielding a 
totally different signal regarding the fault-free case. 

 

Figure 9. Sensor 1 measured signal for the free-fault (solid line), 
early stage (dashed line) and crack (dotted line) cases 

 

6. Conclusions 
 
NDT is considered one of the most effective condition monitoring methods nowadays. Its numerous 
benefits assure the safety and correct operation of devices, which results in reduction of costs and 
improvement of the lifecycle of these devices. In this sense, guided ultrasonic waves as a NDT technique 
are useful for their ability to monitor different geometries of limited access. 

This paper reports the design of a FDD model using ultrasounds along with advanced signal processing 
tools: wavelet transform to filter the measured data and an ARX model to estimate potential faults. The 
system is capable of detecting structural changes by identifying pattern modifications in pulse-echo 
experiments. To achieve the intended objectives, several experiments were carried out on both a 
defect-free surface and on a damaged plate, with different extents of severity ranging from superficial 
cuts to a complete crack over the plate. The experimental results corroborate the adequacy of the 
proposed methodology to identify potential faults. 

Further research should include the adequacy of the proposed procedure to identify other surface 
defects e.g. corrosion. Additionally, it should include other wind turbines parts such as wind turbine 
blades, taking into account material and superficial differences. 
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