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ABSTRACT 

This paper presents the sensitivity analysis results of feed forward multilayer perceptron based Artificial 
Neural Network model for water level prediction in a data constraint transnational Surma River of 
Bangladesh. Catchment characteristics, hydro-geomorphological, meteorological and headwater 
information of the upper catchment area are not available to the authors. As such past daily total 
rainfall and water levels data available within the country are utilized in this study. Logistic sigmoid 
activation function with unit steepness parameter is exercised for non-linear transformations in both 
hidden and output layers. Synaptic weights are adjusted using modified delta rule through error back 
propagation algorithm. Batch mode of training is adopted for global error minimization. Finally, 
statistical indicators are used to evaluate the prediction performance of the neural network. The model 
is then applied to predict water levels with twenty four and forty eight hours lead time.  

It is found that a single hidden layer with two hidden neurons are adequate to train the network. A 
higher number of hidden neurons is speeding up the training procedure, but with an unacceptable 
generalization for the application. The authors have successfully created a model that recognizes the 
intricate pattern of water levels, without having the spatially distributed geomorphic characteristics of 
the watershed and the time-series of the climatic factors. 

Keywords: Flood Forecasting, Stochastic Hydrological Modelling, Artificial Intelligence, Feed Forward 
Neural Network, Surma River, Water Levels,  

 
 
1. Introduction 
 
The conversion of rainfall to river stage is influenced by a number of extremely complex, uncertain and 
nonlinear physical processes. Catchment’s responses to any hydrological event are convoluted by 
various hydro-geomorphologic and climatic factors. These factors are distributed within a system in a 
heterogeneous manner both spatially and temporally (Anmala et al., 2000). To understand the 
underlying physical processes, detailed information of the various hydro-geomorphologic and climatic 
factors along with catchment characteristics are required. Data collection except from being time 
consuming, is usually very costly. In the case of transnational rivers it also depends on the knotty 
political relationship among the shared basin countries. 
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Deterministic (process-based) and Stochastic are two distinctive approaches to model the complex and 
nonlinear relationship of rainfall and river stage. Process-based model describes the physical processes 
involved in the hydrologic cycle. This method is widely used to predict river flow. But according to Minns 
and Hall (1996) the quality of the parameter values obtained from doesn't always approach the values 
determined by the direct measurement, because of the high degree of empiricism in the representation 
of certain hydrological processes. 

On the contrary, system analysis deals with the direct solution of technological problems, by using the 
constraints imposed from the available data sets without taking account of the physical processes of 
catchments (Amorocho and Hart, 1964). This technique was revitalized through the adoption of artificial 
intelligence techniques such as artificial neural networks (ANNs) and genetic algorithms. The artificial 
neural network (ANN) technique has been explored successfully to model the complex hydrologic 
behavior by numerous hydrologic researchers, practitioners and scientists e.g. Shamseldin (1997); 
Jayawardena et al. (1997); Dawson and Wilby (1998); Shamseldin and O'Connor (1999, 2001); Maier and 
Dandy (2000); ASCE (2000a, b); Madsen et al. (2003); Shamseldin et al. (2005); Melesse and Wang 
(2006); Shamseldin (2010); Siou et al. (2011) etc. of different countries, using a variety of training 
approaches and working principles. In most cases ANN technique successfully predicted the overall 
shape of the hydrograph with reasonable accuracy. 

Multilayer Perceptron (MLP) coupled with the error Back Propagation (BP) algorithm and Radial Basis 
Function (RBF) networks were applied successfully by Jayawardena et al. (1997) to predict water levels 
at Tai Bin Chong gauging station (downstream part of the Liu Xie River, a tributary of the Pearl River) and 
Shang Qiao station (west of the Pearl River in southern China). Only one hidden layer was used in this 
study. But number of neurons were different for both stations and approaches. Similar results are also 
obtained by other researchers as well. For instance, Shamseldin (2010) also used MLP comprised of one 
hidden layer with two neurons for forecasting the Blue Nile river flows in Sudan. Based on the 
performance of the model it was concluded that neural network models have considerable potential 
and promise to be used as an alternative approach for river flow forecasting in developing countries. 
Maier and Dandy (2000) reviewed critically 43 papers majority of which were trained using the back 
propagation algorithm and dealing with the use of artificial neural network models for the prediction 
and forecasting of water resources variable. Based on the clinical analysis of the results and procedure 
of such models, it was suggested that undoubtedly ANN could be used as a tool for the prediction and 
forecasting of water resources variables.    

Following such experiences, the authors intend to predict the water levels in the transnational Surma 
River, Bangladesh. Since monitoring procedures are not established, the underlying aim is to avoid the 
spatially distributed geomorphic characteristics of the watershed and the temporal inconsistent climatic 
factors to forecast water levels. 

In Bangladesh, flood forecasting starts at the end of May and continues up to October. So, forecasting of 
lower water levels and pre-monsoon flash flood in transnational river are not covered by exiting flood 
forecasting system. In this regard, this approach could be useful for planning and managing water 
resources during dry season along with predicting flash flood in the data constraint transnational river. 
 
2. Characteristics of the study area 
 
The study area is located in the agriculturally and ecologically important northeast hydrological region of 
Bangladesh (Figure-1) where flash flood in pre-monsoon (March-May) season is very common and one 
of the major concerns for the economy. Total area of this region is about 8,700 km2. The region has 
distinctive hydrological characteristics. The region receives copious river water from catchments on the 
slope of the Shillong Plateau across the border in India to the north and the Tripura hills in India to the 
southeast. Runoff from these catchments discharge very quickly into the depressed area (known as 
haor) of Bangladesh, much of which remain flooded for more than six months each year. Meghna River 
acts as the single outlet of this basin. As such drainage of this area is highly influenced by water levels of 
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Meghna River. The region is a low laying subsiding area, about 300 km away from the Bay of Bengal with 
bottom elevation close to the Mean Sea Level. 

The Surma and the Kushiyara, the main distributaries of the Barak River, are border rivers between 
Bangladesh and India. The Barak River is divided into Surma (northern branch) and Kushiyara (southern 
branch) at the Indo-Bangladesh border. Steep upstream basin topography, short concentration time, 
low elevation differences and sudden excessive rainfalls are the characteristics of the catchment area of 
Surma and Kushiyara rivers. Meandering flood channels, abandoned river courses and fragileness of 
ecosystem are other important natural variables of this area that makes it difficult to implement flood 
control measures. This area is widely flooded and devastated by river flooding in every monsoon season 
and flash flooding during pre-monsoon season, which also has a negative effect to the local economic 
activity. 

 

Figure 1. Northeast hydrological region of Bangladesh with major river system  

The major parts of the catchments of the transnational rivers are in India and are divided into 
Meghalaya, Barak and Tripura River systems. The flow from these river systems occurs in the form of 
flash floods which usually rise to a peak within few hours. In the Bangladesh reaches of the rivers, the 
flood peaks are not diminished to any significant extent mainly because a huge volume of flash water 
enters in a short span of time. Since all the rivers tend to flood simultaneously, the hydrologic regimes of 
the main rivers of the region are complex and erratic (see Figure 2). 

Flooding in haor is also largely affected by the rainfall on the adjacent upper catchments of Indian side 
and significant variation in rainfall in the upper catchments of different river system as well. The total 
average annual rainfall is higher in areas near the Meghalaya hilly region than that of the area close to 
the Tripura upland area with large average deviation. Most of the rainfall is concentrated in monsoon 
season. Annual rainfall ranges from 2200mm along the western boundary to 5800mm in its northeast 
corner and is as high as 12000mm in the headwaters of catchments extending to India. In Surma River, 
water level has two distinct peaks. One peak is in pre-monsoon season and another one during 
monsoon season. 

 

 

 

 

 

Bay of Bengal 

Northeast hydrological region Meghalaya, India 
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Figure 2. Discharge hydrograph of Surma River, Bangladesh at Sylhet Station 

Table 1. Characteristics of rainfall and water levels at Sylhet Station, Bangladesh 
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Rainfall 12.07 16.38 27.52 757.32 4.26 27.06 

Water levels 6.29 2.98 3.24 10.52 0.10 -1.58 

The distribution pattern of rainfall and water level is shown in Figure 3. Both rainfall and water level are 
possessed a ‘tail’ pulled in the positive direction as skewness coefficients is positive (Table 1).  

 

 

Figure 3. Rainfall and water level distribution pattern at Sylhet station, Bangladesh 
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But the degree of departure from symmetry is higher for rainfall than that of water level (Figure 3). The 
coefficient of kurtosis is positive for rainfall. This means rainfall in the study area has a higher peak with 
an asymmetric tail extending out towards right side than that of the normal distribution pattern. 
Nevertheless, water level in the Surma River has a lower peak with lighter tails than that of the normal 
distribution.   
 
3. Multi-layer perceptron (MLP) 

 
The general form of response function of two-layer perceptron network with single output neuron,    
number of variables in an input pattern and  h  number of hidden neurons is expressed in Equation 1.  

y f(w0
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where,    are the input variables, f( ) is logistic sigmoidal nonlinear activation function, w  
 1  and w 0

 1  are 

input weights and thresholds, w 
 2  and w 

 2  are second layer weight and threshold. The architecture 
selection problem is involved to find appropriate value of  n and h. The general form of the sigmoid 
activation function is defined below in Equation 2. 
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1
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           (2) 

where, q is the sum of incoming weighted signals plus associated threshold, K is a steepness parameter 
which can be assumed early. In this study, the value of K is equal to 1.0.  

Average Square Error (ASE) has been determined by summing instantaneous square error over all 
training pattern and then normalizing with respect to the number of training pattern. This is described 
as follows in Equation 3. 
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The forward computation phase is terminated at the output layer by computing the error signal for each 
pattern. The back propagation of this error starts after the completion of error calculation for all input 
patterns.  

The activity of the backward propagation starts with the backward movement of this error signals in 
layer by layer basis. The instantaneous value of error square and thus the average squared error is the 
function of all free parameters of the network such as synaptic weights and threshold of the network. 
The adjustments to the weights and thresholds have been made in accordance with the respective 
errors computed for each pattern. From the arithmetic average of these individual weight adjustments 
over the entire training pattern, actual modification to the weight vector is estimated. This correction is 
proportional to the derivative of the instantaneous value of error square with respect to weight. This is 
known as the delta rule. The general mathematical expression for computing this derivative is shown in 
Equation 4 below.  
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 e
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 y
 
 y

  
 
  

 w
  

(4) 

where, E is the instantaneous value of error square, e is the error for an input output mapping, y is the 
output of a neuron (hidden or output), q is the weighted summation of incoming signals along with the 
bias and w is the weight. 

The local gradient and correction to the weights according to delta rule is defined as Equation 5. 
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Where,   is the local gradient,   is the learning rate parameter. The negative sign in weight change 
indicates gradient descent in weight space. 

 

Figure 4. Forward and backward pass activities in MLP 

Modified delta rule has been used to improve the slowness of learning which includes a momentum 
term. The modification has been made after accomplishing the computation of forward pass for all 
training patterns. The activities of back propagation algorithm have been stopped when the absolute 
rate of change in the averaged squared error (ASE) per epoch is very small or other way very close to 
zero. A FORTRAN programming code has been developed in order to complete the forward and 
backward pass calculation. The associated activities in forward and backward pass for an input pattern 
with four variables, two hidden neuron and one output neuron is shown in Figure 4. 

The predicted results are then evaluated quantitatively by Mean absolute error (MAE), relative root 
mean square error (RRMSE) and coefficient of efficiency (EF) as expressed by Equation 6, 7, 8, 9. 
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where, Oi is the observed value; Pi is the predicted value. 
 
4. Model development 
 
The activities in the forward pass start with the presentation of the input data to the network. These 
inputs are the stimulus signal of the network. Before presenting the data to the network, the input and 
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desired output data for training, validation and application are normalized using the relationship as 
delineated below in Equation 10:  

N   B 
( alue  in)( B  B)

( a   in)
 (10) 

where “ B” and “ B” are e pected minimum and ma imum response of the network. Highest and 
lowest values of a data set have been defined as “ a ” and “ in” and NV is the normalized value. 

Daily water levels and rainfall data are collected manually by the Bangladesh Water Development Board 
(BWDB). Data from 18/8/1980 to 28/8/2008 at Sylhet and Sunamganj gauging stations of river Surma 
have been utilized for training, validating and application by splitting them into three equal parts. The 
first part (20/8/1980 to 22/12/1989) which contains the highest and lowest water levels has been used 
to train the network. Thus, the training range includes the flood event of 1987 and 1988. The second 
(23/12/1989 to 26/4/1999) part has been used to validate the network. The water levels of massive 
flood in 1998 are within the validation range. The rest of the data are used for application purpose, 
containing water levels of 2004, 2007 and 2008 flood events. 
 
5. Parameter selection by sensitivity analysis 
 

5.1 Combination of Input-Rainfall and Water-Levels 

A number of rainfall and water-level combinations have been used for both stations to select the 
appropriate rainfall and water-level arrangement that predicts the water levels with twenty four hours 
lead-time. MLP with two hidden neurons and one output neuron, momentum coefficient and learning 
rate parameter equal to 0.50 and 0.10 respectively and normalization range 0.10-0.90 is used for this 
sensitivity analysis. Performance of different combinations is evaluated quantitatively by statistical 
indicators. Based on the results, it has been observed that rainfall with one, two and three day lag-time 
in addition to the water levels with one day lag-time is able to predict the water levels with twenty four 
hours lead-time more accurately. The combination is selected for further sensitivity analysis and 
application. Exclusion of rainfall or inclusion of one or more water levels of higher lag-time is not 
bringing any improvement, on the contrary it diminishes the performance of prediction. Some statistical 
indicators are performing relatively shoddier. 

5.2 Influence of learning rate parameter and momentum coefficient 

The converging patterns using momentum coefficients equal to 0.40, 0.50 and 0.60 of total relative root 
mean square error in each epoch for different learning rate parameter for Sylhet and Sunamganj station 
are studied.  

 

Figure 5. Convergence pattern during training for different learning rate at Sunamganj 
station with Momentum coefficient=0.50 
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Figure 5 shows the converging pattern for momentum coefficient 0.50 and for different learning rate 
parameter for Sunamganj station. Similar pattern has also been observed for Sylhet station as well. 

For lower momentum coefficient and learning rate parameter, the required numbers of epochs to attain 
the convergence point are higher than that of the higher value of these parameters. The observations 
are similar to the experimental findings described by Haykin (1998). This signifies that smaller learning 
rate parameter is causing small change to the synaptic weights in the network from one to the other 
iteration. Larger momentum coefficients are able to improve this slowness. But there exists the 
potential danger of oscillation in the generating error surface. A constant learning rate with a 
momentum coefficient equal to 0.10 and 0.50 respectively gives best generalization. Based on the 
definition of optimal learning and momentum constant provided by Haykin (1998) and good 
convergence by Boyan and Moore (1995), 0.1 and 0.5 are selected as the optimal value of learning rate 
parameter and the momentum coefficient. Although speedy convergence is attained for higher values of 
learning rate and momentum constants, because of the potential danger of oscillation, these values are 
avoided. 

5.3 Sensitiveness of number of hidden neurons 

The convergence patterns during training for different number of hidden layer neuron at Sylhet and 
Sunamganj gauging stations are observed by using one, two and three day lagged rainfall and one day 
lagged water levels as the input pattern. The momentum coefficient and learning rate are 0.50 and 0.10 
correspondingly. These parameters are kept same for both layers. In both stations with the increase of 
numbers of hidden nodes, the initial relative root mean square errors are increasing. The initial rate of 
declination of the RRMSE is very swift. With the increase of number of iteration, the rate of declination 
or in other words, the slope of the relative root mean square error curve is becoming very gentle. The 
initial and final RRMSE at each simulation together with the number of required epoch is needed to 
reach the stopping criteria are given in Table 2. 

Table 2. Initial and final RRMSE for different hidden neurons 

No. of hidden 
neurons 

Initial RRMSE Final RRMSE No. of epochs 

Sylhet Sunamganj Sylhet Sunamganj Sylhet Sunamganj 

2 0.509 0.391 0.047 0.037 9845 5174 

4 0.781 0.619 0.051 0.043 3429 3436 

5 0.807 0.641 0.053 0.043 3121 3465 

6 0.854 0.683 0.053 0.043 3059 3514 

At both stations, the required numbers of epochs are the highest when hidden neurons equals to two 
but final RRMSE is the lowest. This signifies that increment of number of hidden nodes is improving the 
required time to train a network. At the same time, the performance is deteriorating. Better 
generalization is one of the conditions of optimality of better trained networks which can perform the 
recognition from the experience. The relation between measured and predicted water levels for 
different number of neurons at hidden layer in case of training, validation and application for both 
stations are investigated. It is observed that the strength of linear relationship between measured and 
predicted water levels, decreases in the simulation for higher number of hidden neurons. Rapid 
declination of the slope of the error gradient can be one of the reasons for this poor generalization. 
Contrastingly, the performance using two hidden neurons is reasonably close to the measured water 
levels. Better generalization is also obtained using two hidden neurons. On this basis, it is concluded that 
two hidden neurons are adequate for the nonlinear mapping of input to the output. 
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5.4 Influence of data normalization 

A number of simulations have been conducted in this study in order to find the influence of data 
normalization. No normalization has also been applied, while rainfall and water-level combinations have 
been normalized between the ranges of 0.10-0.90, 0.15-0.85 and 0.20-0.80. The desired water levels are 
always normalized.  

For smaller number of hidden neurons, oscillations are observed at both stations when approaching the 
stopping criteria when the simulation doesn't normalize the input data. Increasing the number of hidden 
neurons, results to an improvement in the oscillation pattern, but still the network attains stopping 
criteria with higher relative root mean square error, after several iterations. In order to improve this 
condition, the input rainfall and water levels and the desired water levels are normalized within the 
range of 0.10 to 0.90 (see Figure 6). Normalization results to an improvement in the oscillation and early 
stopping problems. But the predicted lower water levels are higher those measured. In order to improve 
this shortcoming, in the third case, the input data are normalized to the range of 0.15 to 0.85 which 
enhance the strength of the collinearity between the measured and predicted water levels. In fourth 
case, the input data has been normalized in the range 0.2 to 0.80 with better agreement between 
measured and predicted water levels, compared to previous three normalization cases. Sigmoid 
function is used as the non-linear transfer function both in hidden layer and output layer, which has the 
bounded output range between zero and one. The actual observed output of the network is outside of 
the bounded range of the sigmoid transfer function. So data normalization is prerequisite and it is one of 
the important aspects in designing the topology of the network. When the rescaled values are close to 
the limiting boundary of the activation function, the network is producing better results. The 
performance of error convergence gives the similar pattern as described by Van Ooyen and Nienhuis 
(1992). 

 

Figure 6. Converging pattern of non-normalized and normalized data for different no. 
of hidden neurons at Sylhet station 

 
6. Outline of selected MLP topology 
 
Designing the architecture of the network consists of the selections of the number of input variables in a 
pattern, number of hidden layers and number of hidden neurons in each layer. The numbers of output 
neurons are predefined. In this study, single output neuron is predetermined. Based on the results of 
the sensitivity analysis one, two and three day lagged rainfall, in conjunction with one day lagged water 
levels, are selected as the variables in an input pattern. The number of hidden layer is one and it is 
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composed of two hidden neurons. Water level is the single output, expected from the network. Learning 
rate parameter, momentum coefficient and synaptic weight of the network are the other free 
parameters of the network.  
 
7. Application for forecasting 
 
The selected data combination (rainfall with one, two and three along with water levels with one day 
lag-time), learning rate parameter (0.10), momentum coefficient (0.50) and data normalization range 
(0.20-0.80) and model topology (two hidden neurons and one output neurons) are applied to predict 
the water levels with 24 and 48 hrs lead time for Sylhet and Sunamganj station.  

Comparing the results of the application phase of simulation with the measured water levels in a time 
series plot (Figure 7 & 8), indicates that continuous prediction of river water levels with ANN is possible. 
The actual water levels are very close to the neural network predictions, at both stations. The data 
region where the pattern is defined clearly is predicted fairly. The lower water levels are over predicted. 
The scatter diagrams show an almost linear relation of the prediction with the observations. The Mean 
Absolute Error (MAE) is a measure of the closeness of the predicted water level to the measured water 
level. MAE value is close to the optimum value (0.0) which indicates that the measured water levels are 
well-modelled. On the other hand, mean absolute error for earlier, lead-time predictions. This occurs 
because the deviation of predicted values from the measured values is increasing. Relative Root Mean 
Square Error (RRMSE) evaluates the concentration around the mean of the observed values and it is 
close to zero. This means that the predicted water levels are not dispersed around the mean observed 
value. Nash-Sutcliffe coefficient (EF) is used to assess the predictive power of a model. Its value is very 
close to 1.0 which means the model is capable to capture the overall pattern of the water level 
hydrograph with reasonable accuracy. The performance of statistical indices are shown in Table 3. 

 

Figure 7. Comparison of measured and predicted water levels in application phase of simulation at 
Sylhet station for 24 hrs lead time 

The stoping criteria adopted in this study, improved the performance of the model as compared to 
Thirumalaiah & Deo (1998). The value of R2 is close to 1.0 which signifies a very good linear regression 
correlation between the measured and predicted water levels. The linear regression correlation 
between the measured and predicted water levels is also better for 1-day lead time prediction. 
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Figure 8. Comparison of measured and predicted water levels in application phase 
of simulation at Sylhet station for 48 hrs lead time 

Table 3. Performance of statistical indices for 24 and 48 hrs lead-time 

Lead time 
(hrs) 

Phase of 
Simulation 

Mean Absolute 
Error (MAE) 

(m) 

Relative Root Mean 
Square Error 

(RRMSE) 

Coefficient of 
Efficiency (EF) 

R
2
 

Sylhet Sunamganj Sylhet Sunamganj Sylhet Sunamganj Sylhet Sunamganj 

24 

Training 0.27 0.20 0.06 0.05 0.99 0.99 0.99 0.99 

Validation 0.29 0.19 0.06 0.05 0.99 0.99 0.99 0.99 

Application 0.26 0.17 0.06 0.04 0.99 0.99 0.99 0.99 

48 

Training 0.35 0.24 0.08 0.06 0.98 0.98 0.98 0.98 

Validation 0.38 0.22 0.09 0.07 0.97 0.98 0.97 0.98 

Application 0.31 0.23 0.08 0.06 0.98 0.98 0.98 0.98 

 
8. Conclusions 
 
Based on the performance of the statistical indicators, it can be concluded that MLP based ANN model 
successfully predicts river water levels in data scarce transnational flashy Surma River without using the 
geomorphic characteristics of the watershed and climatic factors For lower momentum coefficient and 
learning rate parameter, required number of epochs to reach the stopping criteria are higher. Larger 
momentum coefficients improve this delay. But oscillations are observed during error surface 
generation. In this study, a constant learning rate (0.10) and a momentum coefficient (0.50) produces 
best generalization. 

In the case of non-normalized data with smaller number of hidden neurons, oscillations are also 
observed. Improvement over oscillation pattern is achieved by increasing the number of hidden 
neurons. But the stopping criteria are attained with poor generalization. On the contrary, normalized 
data generate better outcomes. This is due to the sigmoid activation function which was used in both 
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hidden and output layers as the nonlinear transfer function. When the rescaled values are not close to 
the limiting boundary of the activation function, the network is capable to comprehend the measured 
water level patterns more accurately. This implies that data normalization is very useful in case of 
multilayer perceptron feed forward neural network where sigmoid function has been used as the 
nonlinear transfer function. Normalized range 0.20-0.80 produces better generalization during 
application in this study. 

With the increase of number of hidden neurons, the required number of iterations to attain the 
stopping criteria are lower.  But this gives poor generalization in the application phase of simulation 
because of the rapid change in the gradient of the error surface. It has been found that the performance 
with two hidden neurons is better than that of higher number of hidden neurons. Predicted water levels 
are close to the measured water levels as well. Higher water levels of the river are found to be trained 
more fairly than that of the lower water levels. Pre-monsoon water level is also predicted quite 
reasonably by the model.   
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