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ABSTRACT 

Since a spectrum of hydrological and geomorphological conditions produce flood pulse environment in a 
riverine or a deltaic system, it is essential to have the knowledge on spatial and temporal distributions of 
river flow and dependent processes for environmental flow requirements, ecosystem maintenance, 
water resources management, and hydrological forecasting among others. Such systems being 
complex as the exchange of flows between the main channel and the flood plains are not well 
understood, flow partitioning dynamics between the various channels on large water bodies are often 
difficult to represent even with sophisticated models. In view of this, an attempt has been made to apply 
a short-term stochastic forecasting model-an Auto Regressive Integrated Moving Average (ARIMA) 
aided by Artificial Neural Networks (ANNs) to partition flows into the downstream tributaries, viz.: Lopis 
and Gadikwe channels from the Khiandiandavhu-Maunachira (K-M) Junction Junction (the main river 
channel) river system of the iconic Okavango delta in Botswana.  

As such, observed monthly flow data between October 2005 and September 2008 at the K-M Junction, 
and the two downstream tributaries were used to test the performance of these hybrid models for the 
complex deltaic system. It was found that the partitioned flows at Lopis and Gadikwe agree very well 
with observations when using a Single Input Multiple Output (SIMO) ANN (i.e. an inverse variant of the 
widely used Multi Input Single Output (MISO) ANN architecture) and an ARIMA (1,1,1) model. The 
Mean Squared Errors (MSEs) in the forecasts were also minimal, thus giving some hope on the use of 
such a hybrid mode for the rest of the branched river networks of the whole Okavango delta. 

KEYWORDS: Artificial Neural Network, Autoregressive Integrated Moving Average, Mean Squared 
Error, Forecasting 
 
1. INTRODUCTION 
It is generally agreed that effective water management strategies are crucial for sustaining economic 
development, meeting water demand for growing and urbanizing populations, and sustaining ecological 
integrity of catchment systems (Pike and Scatena, 2010).Understanding the hydrological processes at 
catchment level is key to dislodging the linkages between riparian ecosystems, geomorphic and 
ecological processes (Shaw and Cooper, 2008). Over the past  few decades, a great deal of research 
has been devoted to modeling and forecasting of river flow dynamics (Sivakumar et al., 2002; 
Mazvimavi and Wolski, 2006; Parida et al., 2006; Pechlivanidis et al., 2010). This has led to great 
advances in the understanding and modeling of complex interplays between catchment processes and 
variables characterized by non-linearity. Hydrologic models can particularly assist decision makers in 
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dealing with these challenges by providing systematic and consistent information on water availability, 
spatial activities particularly land use change and its impacts on the hydrologic systems.   

In river flow forecasting, models may be grouped into physically-based and black-box models. In 
between these spectrums lie the so-called conceptual models (Wheater, 2002). The physically-based 
models are specifically designed to mathematically simulate or approximate the general internal sub-
processes and physical mechanisms that govern the river flow process, whereas the black-box models 
are designed to identify the connection between the inputs and the outputs, without going into the 
analysis of the internal structure of the physical process (Sivakumar et al., 2002). Conceptual models 
seek to represent important component processes as perceived by the modeler, and as a result the 
model structure is specified a priori (Wheater et al., 1993). They typically conceptualise the catchment 
water balance using series of interconnected storages that do have a physical interpretation, but usually 
employ empirically parameterised equations to describe the movement of water between the storages 
(Young et al., 2006). 

Hydrological models may be used to analyze runoff data (and other related variables) at daily, monthly 
and annual timescales. Among these three timescales, the monthly runoff generation analysis is 
probably the most difficult to model as it needs to take into account both short-and long-term hydrologic 
processes (Anmala et al., 2000; Lungu, 1991). Despite this, monthly runoff predictions are useful for 
long-term simulation over periods of decades as it is relevant for many processes of subsurface water 
movement, where residence times of several months in a watershed are not unusual (Anmala et al., 
2000). In a delta these aspects are well noticed where in addition to the storage characteristics due to 
long residence time, the flow partitioning into several stream is a dynamic process and very complex to 
make a good forecast for management purposes. 

Therefore, in this study, a hybrid modeling approach is proposed. This consists of a (i) stochastic model 
to capture the persistence component inherent in the flow because of long storages, and to forecast flow 
volumes at the desired river junctions; (ii) then the use of artificial intelligence to partition these flows 
into the emerging downstream branches in the Okavango delta in Botswana, potentially solving an 
inverse modeling problem using the ANNs. This is because the ANNs are usually used to obtain a 
single output based on multiple input variables (i.e. Multiple Input-Single-Output) (Emamgholizadeh, 
2012). This approach was tested using observed monthly discharge volumes to simulate flow volumes 
for long-term management of the ecological functioning of this world’s largest dynamic wetland system. 
 
2. THE STUDY AREA 
The Okavango Delta is situated in the northern part of Botswana in the Ngamiland District with its 
drainage basin covering three countries namely, Botswana, Namibia and Angola. The delta is a 
significant water source for each of these countries (Wolski et al., 2006). The basin in Botswana is 
enclosed between coordinates 21°

 
41’’ and 23° 53

’
East and 18° 15’ and 20° 45’ South (DWA, 2004). 

Rainfall over Angola, southeast of the Luanda Divide, is the primary source of water for this river. The 
Okavango River enters Botswana at Mohembo (in the month of April), having travelled some 1000 km 
from its source, and it is then channeled through a 15 km wide corridor between two secondary faults 
oriented north–east to south–west known as ‘panhandle’. Downstream of the panhandle, the Okavango 
comprises a near-perfect conical surface with a gradient of approximately 1:3600 radiating from the 
apex of the ‘delta’ which is more correctly classified as an alluvial fan. From Mohembo, the Okavango 
River flows southeast to Seronga before dispersing into a series of complex and poorly understood 
vegetation-choked channels and shallow basins that form the largest inland delta in the world. It then 
takes 4–5 months for this flood wave to travel approximately 300 km, through the wetland, to reach the 
town of Maun, at the toe of the delta, in August (McCarthy et al., 1998). This pattern of flooding means 
that the Okavango Delta experiences its maximum extent of inundation during the dry winter season. 
The area flooded at least every decade is approximately 14 000 km

2
, of which 9000 km

2
 is classified as 

actual wetland (Kurugundla et al., 2009). 

The region of the Okavango delta is semi-arid with evaporation four times higher than rainfall (Ringrose 
et al., 2005), and is of the order of 2300 mm in a year. There is a large difference between the volumes 
of water entering and leaving the Okavango Delta each year. 
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Figure 1. The spatial extend of the Okavango delta in Botswana. [Station 8=KM-Junction, 9=Lopis, 
11=Gadikwe]. (Source: Kurugundla et al., 2009) 

 
The outflow from the delta is related to the extent of the inundation of the wetland, and several attempts 
have been made to predict the outflow using the variables that affect the spread of this inundation, such 
as rainfall, inflow and evapo–transpiration (Bauer, 2002; Dincer et al., 1987; Gieske, 1997; Ellery et al., 
1993 and McCarthy et al., 1998). The conceptually simple hydrological models of McCarthy et al., 
(1998) and Wolski et al., (2006) illustrate the importance of inflow, rainfall, previous outflow and 
evaporation as important variables that contribute to the observed variation in outflow. 

With the outflow of the Delta standing at about 2% of the inflow, the southernmost Lake Ngami or the 
Boteti River only receives substantial water during higher flow years. The Boteti River, which is now 
mostly dry, ultimately connects to the Makgadikgadi salt pan to the southeast of the Delta. 
 
3. METHODOLOGY 
As said earlier, due to long residence time of flow into the delta as storage, it has been proposed to 
model the flow volumes in main channel before bifurcation into smaller streams using stochastic 
approaches and artificial neural networks (ANNs).  
 
3.1 Autoregressive Integrated Moving Average (ARIMA) 
Autoregressive integrated moving average (ARIMA) models are useful in representing many time series 
(zt, t =1,2,…N) exhibiting non-stationary behaviour and in particular, which do not vary about a fixed 
mean. The models have the general form  

tqt
d

ptP a)B(z)B(z)B(   (1) 

where d
P )B1)(B()B(  is the generalized Auto Regressive (AR) operator, in which one or more of the 

zeros of the polynomial )B(P  lie on the unit circle. The order of an ARIMA process is (p, d, q), also 

written as ARIMA (p, d, q), represents the p
th
 order AR, q

th
 order Moving Average (MA) components with 

‘d’ time steps differenced series. In practice, d is usually 0, 1, or at most 2.  
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If t
dz  is replaced by tz  in Eq.(1), when d = 0, it represents the stationary ARMA (p, q) process as 

a special case, or even just a simple AR(p) or MA(q) processes. It is therefore legitimate to denote the 
AR (p) model by ARMA (p, 0) or ARIMA (p, 0, 0), the model MA(q) by ARMA (0, q) or ARIMA (0, 0, q), 
and the model ARMA (p, q) by ARIMA (p, 0, q) (Box, Jenkins, and Reinsell, 1994).  

As time series data that are observed on some regular calendar basis may have some seasonal effect, 
there will generally be autocorrelation at lag s or at its multiples, depending on the persistence and 
nature of that autocorrelation (Wadsworth, 1998). To account for the seasonal dependence, Eq. (1) may 
be written as  

t
s

Qt
D
s

s
P e)B(z)B(   (2) 

where te  is a normal random deviate, D is the degree of seasonal differencing, s is the periodicity and is 

equal to 12 for the data considered in this study, and 

Ps
P

s2
2

s
1

s
P B...BB1)B(   (3) 

Qs
Q

s2
2

s
1

s
Q B...BB1)B(   (4) 

The operators )B( s
P  and )B( s

Q  are seasonal autoregressive and moving average operators, which 

are polynomials in 
sB  of degrees P and Q, respectively, and satisfy stationarity and invertibility 

conditions. 
s

s B1 is the simplifying operator. Useful operations in the analysis are  

stt
s zzB  , sttt

s
ts zzz)B1(z   (5) 

Similar to Eq. (2), a model  

1t
s

Q1t
D
s

s
P e)B(z)B(    (6) 

can be used to link the current behaviour with previous observations, and so on. In Eq.s (2), (6) and 

other similar equations, the error terms te , 1te  ,… would in general be correlated (Lungu, 1991). Such 

relationships can be taken care of by the model  

tqt
d

p a)B(e)B(   (7) 

To account for both the seasonal and non-seasonal dependencies, Eq.s (6) and (7) are combined, to 

give the general multiplicative seasonal ARIMA model of order s)Q,D,P()q,d,p(  : 

tq
s

Qt
dD

sp
s

P a)B()B(z)B()B(   (8) 

where subscripts p, q, Q, P have been added as a reminder of the orders of the various operators.  

The specific objectives of stochastic modeling are (i) to identify the order (p, d, q) for a non-seasonal 

model, or the order s)Q,D,P()q,d,p(   for a seasonal model, that provides a parsimonious representation 

for both the total series under consideration and the stochastic component (ii) to determine the 
proportions of the variance of the total series of the serially correlated data, explained by the periodic 
and stochastic components (iii) to determine the persistence pattern (if any) of the stochastic component 
and (iv) to calculate least square estimates for the parameters of the equations.  Against all these, 
ARIMA models are based on three parts: (1) an autoregressive part, (2) a contribution from a moving 
average and (3) a part involving the first derivative of the time series. The formula used for describing 
AR(p) models is; 

 t=∑ i

p

i=1

 (t i) (9) 
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where the order of the model is determined by p. This is described by linear models based on preceding 
observations. 

Past estimation or forecasting errors are taken into account when estimating the next time series value. 

The difference between the estimation  t̂ and the actually observed value  t is denoted  t. 

The description of MA(q) model is: 

 t=∑ 
i

 

i=1

 (t i) (10) 

ARMA models are obtained through combining AR and MA models. An ARMA (p,q) is described by: 

 (t)=∑ i

p

i=1

 (t i)  ∑ 
i

 

i=1

 (t i) (11) 

After additional differentiation and integration of the time series, ARIMA models are realized. The 
parameter d of ARIMA(p,d,q) determines the number of differentiation steps until the time series is 
stationery. It is from this that a suitable ARMA (p,q) is fitted to the resulting series. Finally, the estimated 
forecasts are integrated d times to obtain results in the normal domain. 
 
3.2. Artificial Neural Network 
An Artificial Neural Networks (ANN) could be conceptualized as an information processing paradigm 
that is inspired by the structural and operational functioning of the biological nervous systems, such as 
the brain. Central to this paradigm is the novel structure of the information processing system that is 
composed of a large number of highly interconnected processing elements (neurons) working in unison 
to solve specific problems. 

Neural Networks, with their remarkable ability to derive meaning from complicated or imprecise data, 
can be used to extract patterns and detect trends that are too complex to be noticed by either humans 
or other computer techniques. Their use has to some degree alleviated the problem of modeling the 
complexity between rainfall and runoff in flow regime studies (Michaelides et al., 2001; Shamseldin, 
1997). This is achieved through determination of neural network optimal architecture, which is included 
as a part of the learning strategy. Artificial Neural Networks approach has successfully been used in 
hydrologic studies by a considerable number of researchers (Anmala et al., 2000; Furundzi 1997; Parida 
and Moalafhi 2008; Sivakumar et al., 2002; Uvo et al., 2000). Over the years, neural networks have 
proved to be uniquely powerful tools in applications where formal analysis would be difficult or 
impossible, such as pattern recognition and non-linear system identification and control (The Math 
Works, Inc. 1994-2002). ANNs have widely been used in modeling a large variety of dynamic systems 
that are characterized by non-linearity (Coulibaly et al., 2001; Hsu et al., 2002; Johnson and Rogers, 
2000), and such non-linearity is a prime characteristic of issues related to the atmospheric and 
hydrologic sciences.  
 
 
3.2.1. Feed forward back propagation neural network 
The use of ANNs manifested through the feed-forward back propagation entails signals traveling one 
way only; from input to output. Mapping of the input to output vectors does not have feedback 
connections but errors are back-propagated during training to optimize for the performance function 
which is mostly Mean Squared Errors (MSEs). The simplest implementation of back propagation 
learning is realized through updating the network weights and biases in the direction in which the 
performance function decreases most rapidly-the negative of the gradient.  

One of the advantages of use of ANNs is the inherent provision of adaptive learning in which the 
network can learn how to do tasks based on the data given for training or initial experience. This is 
mostly realized through model predictive control platform which offers a collection of functions 
(commands) developed mostly for use in multivariable control algorithm in many dynamic systems. 
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Depending on the number of system inputs and outputs, network architectures are classified as multi-
input-single-input (MISO) and single-input-multi-output (SIMO) systems. With the SIMO configuration, 
the practical approach is to control the most important process variable and leave out the other 
variables uncontrolled or use the output variables to control the input of a 1xM system after which the 
observed and controlled (simulated) variables of the input variables could be used as controller 
variables of each individual of original output variable of the 1xM system separately (Cheng and Mulkey, 
2004).  

The control system comprises an M-input and 1-output controller in which  tr1 ,  tr2 ,…  trM are set-

points 1,2,…M.  tx1 ,  tx2 ,…  txM  are system outputs of the 1xM system.  td1 ,  td2 ,…  tdM  are 

distributions 1,2,…M caused by noise or load.  ty1
,  ty2

,…  tyM
 are measured process variables of 

the 1xM system.The control objective is to produce output  tu  to manipulate the manipulated variable 

so that the measured process variable  ty1
,  ty2

,…  tyM
 track the given trajectory of their set-points 

 tr1 ,  tr2 ,…  trM , respectively, under variations in set-point, disturbance, and process dynamics. In 

this regard, the controller is focused on optimizing for errors  te1 ,  te2 ,…  teM . Here the control 

objective is to optimize the error for the more critical loop, or for all M loops with no weighing on the 
importance so that these may be static errors in all the loops. 

During training, neural networks are adjusted so that a particular input leads to a specific target output. 
The weighed activations are the connections that inhibit or excite activity. The network is usually 
configured on the batch training mode in which training proceeds by making weight and bias changes 
based on a comparison of the output and the target until the network output matches the target. This is 
called supervised training. 

A neuron with a single R -element input vector can be represented as; 

p1
,p2

,…pR
 (12) 

wherepi
 is an i

th
 element input and   is the number of elements in the input vector. 

The input vector elements enter the network through the weight matrix W  
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 (13) 

The row indices on the elements of the matrix indicate the destination neuron of the weight, and the 
column indices indicate which source is the input for that weight. Here s  is the number of neurons in a 

layer. The weighed activations are summed and fed to each neuron in the following layer, 

bpw...pwpwn RR,122,111,1   (14) 

where, wp  is the dot product of the (single) row matrix w and the vector p is the argument of the transfer 

function f (.) with the output; 

 bWfa p   (15) 

The multi-input—single-output (MISO) implementation of prediction usually adopted is based on 

historical record of the output  kyl
 and the inputs  kv1 ;  kv2 ,…,  kvnv

.The step response 

coefficients are estimated for nv  inputs and ny  outputs and this enables computation of the system 

output for any input sequence; 

      


n

1i
ni 1nkvsikvsky  (16) 
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where si  is the output change for a unit input change v  for n steps 

A three layer 2x1 system controller neural network architecture is shown as in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A three –layer 2X1 system controller neural network that was adopted for both Gadikwe and 
Loopis discharge volume predictions 

 
For this study, the input variable was monthly river flow data at KM-junction station with output variables 
being river flows at the downstream branches, Lopis and Gadikwe. Then a 2-input-1-output Feed 
Forward Neural Network (FFNN) was developed as the controller to reproduce the discharge volumes at 
KM-junction. The historical and simulated volumes at KM-junction were subsequently used as inputs 
with volumes at Gadikwe and Lopis as targets separately for both timeseries of first entire observations 
(set A) and secondly the entire observations with the last two months volumes replaced by ARIMA 
forecasts (set B) for KM-junction. The input vectors, discharge volumes, were scaled to fall within [-1 
and 1] as some form of normalization to improve on generalization.The output of the network was then 
post-processed and transformed back to the original form of inputs and targets. The outputs were 
compared with the target discharge volumes as the inputs were applied to the network. A learning rule 
(training algorithm) was then used to adjust the weights and biases to nodes of the network in order to 
find the optimum network architecture that could map the input vectors to target output vectors.  

Back-propagation learning algorithm was used alongside the sigmoidal transfer function. The back-
propagation algorithm is differentiable and it gives a network the needed ability to learn and/or model 
non-linearity between input(s) and output(s) while sigmoid transfer functions are usually preferable to 
threshold activation functions since with sigmoid units, even a small change in the weights will usually 
produce an appreciable change in the outputs, which makes it possible to tell whether that change in the 
weights is good or bad. The input layer used the identity transfer function because no processing takes 
place in the input layer. The hidden layer neurons used the log-sigmoidal transfer function which is 
commonly used with the back-propagation networks. The output neuron used purelin transfer function.  

The network was developed to use the inputs that contributed at least 95 % of the total variation in the 
data set. One third of evenly representative data were equally divided between training, validation and 
testing. The training stopped when the validation error increased for a default number of iterations at 
which the weights and biases at the minimum of the validation error were returned finally 
 
4. RESULTS AND DISCUSSIONS 
Observed monthly discharge volumes at KM-Junction from October 2005 up to July 2008 (say Set A) 
were used as to develop an ARIMA(1,1,1) modeland subsequently to use it to make short time 

Input layer : 
Gadikkwe and 

Lopis 

Hidden layer : 

Procesing units 

Outputlayer : 

Final outputs 
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forecasts. In this regard, discharge volumes for KM-Junction were forecasted for the months of August 
and September 2008 (Table 1). 
 

Table 1. Observed and ARIMA(1,1,1) forecasted discharge volumes at KM Junction 

Month Observed-Discharge 
Volumes, MCM 

ARIMA-Forecasted Discharge 
Volumes, MCM 

August 2008 75.71 78.62 

September 2008 75.08 77.40 

 
The last two (2) river flows (i.e., August and September 2008) of set A were then replaced by the two (2) 
forecasts, which constituted saySet B. Discharge volumes at KM-Junction for both timeseries (Sets A 
and B) were used separately as the input in development of the M-input-1-output controller at which 
input variables were discharge volumes at both Gadikwe and Lopis. A network was developed and 
trained to simulate discharge volumes at KM-Junction. These simulated and observed (sets A and B 
separately) discharge volumes at KM-Junction were then used as inputs with single outputs being 
Gadikwe and Lopis discharge volumes separately.  

The observed and simulated (using both sets A and B) discharge volumes are plotted together as 
shown by Figures 2 and 3 for both Lopis and Gadikwe respectively. 

 
Figure 2. Observed and simulated discharge volumes at Lopis gauging station 

 
Figure 3. Observed and simulated discharge volumes at Gadikwe gauging station 
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(a) (b) 

 
Figure 4. Simple Linear regression between the observed and simulated discharge volumes at Lopis 

gauging station. (a) set A and   (b) set B at KM Junction 
 
 

  

(a) (b) 

 
Figure 5. Simple Linear regression between the observed and simulated discharge volumes at Gadikwe 

gauging station. (a) using set A and (b) set B at KM Junction 
 
 

The simulations using both sets A and B generally were in good agreement with correlation coefficients 
between observed and simulated volumes being greater than 0.8 for both the sites. This offers promise 
for advancing the use of this hybrid modeling approach for flow partitioning of the Okavango river 
system. Mean Squared Errors (MSEs) appear to be minimal for Gadikwe than for Lopis and thus the 
discharge volumes were better reproduced at Gadikwe gauging station with the testing data set having 
the highest MSE in both cases (Figures 6 & 7). 
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(a) (b) 

 
Figure 6. Mean Squared Errors (MSEs) for the data sets (a) using set A and (b) set B at KM Junction 

 

 
 

Figure 7. Mean Squared Errors (MSEs) for the simulations to predict partitioned flow into Lopis and 
Gadikwe gaugingstations 

 
5. CONCLUSIONS 
A stochastic forecasting for monthly river flow partitioning downstream of KM-Junction of the Okavango 
delta in Botswana has been attempted through an ARIMA forecasting model and subsequently 
evaluated using ANNs at both Lopis and Gadikwe gauging sites. For both sites, simulations were 
attempted using one set of observed flows at KM-Junction spanning between the period October 2005 
through September 2008, all inclusive (set A). With the other set, the last two monthly discharge 
volumes (August and September 2008) were replaced with the ARIMA (1,1,1) forecasted flows (set B). 
The simulations at Lopis were achieved at correlation with observations of 0.93 (MSE=3.4) and 0.86 
(MSE=6.2) respectively using both sets A and B respectively.  The simulations were correlated 
withobservations at Gadikwe at 0.92 (MSE=-1.9) and 0.87 (MSE=3.4) respectively.  

Although the MSEs using the ARIMA (1,1,1) extended time series were higher than the ones using 
entirely observed time series for KM-Junction, the use of a stochastic forecasting (ARIMA) model aided 
by SIMO ANN model for monthly river flow partitioning could be a viable option in the Okavango delta 
with correlation coefficients being higher than 0.8 in all the cases. Incorporating a greater range of river 
systems and developing nested models that can capture majority of riverbank flows will improve the 
resolution that can be used to include ecological relationships and extend the study to the whole of 
Okavango deltaic system. Having demonstrated use of stochastic forecasting for river flow partitioning at 
monthly time scales, finer resolutions of daily time scales, for example, could be very helpful and with 
synchronizationof the time scales short term forecasts of branched river systems over the whole delta 
aided by inclusion of other hydro-climatic, ecological, and geomorphological data could be a 
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phenomenal achievement for hydrological forecasting, water resources management, ecosystem 
studies, flood warning, and tourism-related activities among others. 
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