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ABSTRACT 

In order to design a network of drainage canals, it is essential to consider the excess water from the 
agricultural land (overland flow) and to evaluate the characteristics of flow routing, such as the flow 
depths and discharges in the system of tertiary and main drainage canals of various order. In this 
paper models based on the Saint-Venant equations are presented, simulating the flow routing in a 
system of drainage canals. In these models, the lateral inflow towards tertiary drainage canals is the 
overland flow from adjacent fields. 

The Saint-Venant equations in their complete form (dynamic model) or in simplified forms, such as 
the diffusion wave equations (diffusion model) and the kinematic wave equations (kinematic model) 
are numerically solved by using the MacCormack explicit computational scheme which is a two-step 
predictor-corrector scheme, conditionally stable and convergent. In modeling flow through the system 
of drainage canals, emphasis was given to the simulation of flow at the junction points of two or more 
canals by applying the characteristic equations (negative and positive equations) in addition to the 
mass and energy conservation principles. 

Applications of the models for the simulation of flow within the system of drainage canals, subject to 
lateral inflow owing to overland flow, were also conducted in order to study the effect of various 
parameters of the drainage canals, on the hydrographs’ formation and also on the accuracy of the 
diffusion and kinematic equations in predicting flow in a drainage network. 
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INTRODUCTION 

In order to design a system of drainage canals, it is essential to estimate the discharge rate and the 
flow depth at every point along the drainage canals. These hydraulic characteristics are affected 
among others by the duration and the intensity of rainfall that the irrigated fields receive, as well as 
the flow into the system of drainage canals. Overland flow is directed to the tertiary drainage canals 
and through the main system of drainage canals is directed downstream to the outlet of drainage 
system, as Figure 1 shows. 

Flow routing in open channels especially in river networks has been studied in detail in the past and 
it may be approximated by hydrologic or hydraulic methods. Hydrologic methods, such as the 
Muskingum method, may be used (Chaudhry, 2008) in routing the flow in canal networks, but they 
are not able to simulate the backwater effects (Singh, 1996). Hydraulic methods may be used for 
flow routing simulation in a system of drainage canals, since in designing the canals their hydraulic 
and geometrical characteristics are considered known (Akan, 1985; Singh, 1996; Kesserwani et al., 
2008). 
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A lot of models using the hydraulic method are based on the numerical solution of the Saint-Venant 
equations, to simulate the unsteady one-dimensional flow routing through canal networks. In many 
cases the Preismman implicit computational scheme is applied to solve the Saint-Venant equations 
(Naidu et al., 1997; Chen et al., 2007). The Preismman scheme transforms the partial differential 
equations to a system of nonlinear algebraic equations which is solved by the Newton-Raphson 
method. Several researchers (Naidu et al., 1997; Sen and Garg, 2002; Islam et al., 2005) have 
presented various techniques to minimize the computational effort, which is significant for flow 
problems in canals networks. Explicit computational schemes for the short term simulation of flow 
routing, generated by intense rainfalls, through a network of drainage canals may be used to avoid 
complexities of the implicit schemes (Pantelakis et al., 2011). 

In this research work, three numerical models are presented for the simulation of flow routing in a 
system of drainage canals. The tertiary canals are considered to receive the overland flow from the 
adjacent fields and thus overland flow is the lateral inflow towards the drainage canals. The flow 
routing models are based on the numerical solution of the one dimensional Saint-Venant equations 
in their complete form (dynamic model) and in their simplified forms, such as the diffusion wave 
equations (diffusion model) and the kinematic wave equations (kinematic model). The MacCormack 
explicit computational scheme, which is a two-step predictor-corrector scheme, conditionally stable 
and convergent, was used for the numerical solution of the above-mentioned equations. In modeling 
routing flow, emphasis was given to the simulation of flow at the junction points of two or more 
canals by applying the characteristic equations in addition to the mass and energy conservation 
principles. The three models were applied to a system of four drainage canals in order to determine 
the effect of the tertiary canals length, the canals bed slope and their roughness coefficient on the 
computed hydrographs and also the accuracy of the diffusion and kinematic equations in modeling 
flow in systems of drainage canals. 
 
GOVERNING EQUATIONS AND THE MACCORMACK SCHEME 

A typical system of drainage canals within surface irrigation systems is given in Figure 1. The 
overland flow is directed to the tertiary drainage ditches and then through the system of tertiary and 
main drainage canals of various order is conveyed to the outlet of the drainage network. The Saint-
Venant equations in their complete form and in their simplified forms (the diffusion and the kinematic 
equations) that describe one dimensional unsteady flow in a prismatic channel subject to lateral 
inflow, owing to overland flow, may be written in the following conservative Lax form: 
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A is the area (L2), Q is the flow rate (L3 T-1), Qp is the lateral inflow from overland flow (L3  L-2 T-1), t is 
the time (T), x is the distance (L), g is the acceleration of gravity (L T-2), D is the distance between 
the center of the cross section and the free surface (L), So is the bed slope (L L-1) and Sf is the 
friction slope (L L-1) which is given by equation of Manning or Chezy. 

The continuity and momentum equations written in the matrix form of Equations 1a and 2a,b,c 
express mathematically the principles of mass and momentum conservation. 
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Figure 1. Drainage network of two tertiary canals (numbered 1 and 3) and two parts of one 
secondary canal (numbered 2 and 4) 

 
The MacCormack scheme is an explicit, two-step predictor-corrector scheme that is second-order 
accurate in space and time and is capable of capturing the shocks without isolating them (Chaudhry, 
2008). The predictor and corrector step of MacCormack scheme have the following forms: 

Predictor step: 
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where k represents spatial node, j represents time, and *j+1 refers to variables computed during the 
predictor part. 

In case of the diffusion model, apart from the above equations, the Manning equation is also 
required, which for the predictor step is written as follows: 
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where Ru is the hydraulic radius 

Additional the Manning equation for the corrector step has the form: 
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Similarly, in case of the kinematic model, the equation of Manning is also required, and it is written 
for both the predictor and corrector step, as follows: 
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INITIAL AND BOUNDARY CONDITIONS 

For the simulation of flow routing in a system of drainage canals, in addition to the two differential 
equations (continuity equation and momentum equation), the initial and the boundary conditions are 
also required. As Figure 2 shows, apart from external boundary conditions at points A, B and C, the 
interior boundary conditions at the junction point m of drainage ditches should be defined.  
 

 
Figure 2. Drainage network with interior and external boundary conditions 

 
At this point, the positive characteristic equation is applied at the end node of the ditch numbered 1, 
as well as at the end node of the ditch numbered 2, as equation (6) shows: 

m1,2 mC : Q f(y )   (6) 

Also the negative characteristic equation is applied at the first node of the ditch numbered 3, which is 
written as: 

m m3C : y f(Q )   (7) 

It is mentioned that the flow is directed from the ditches 1 and 2 to the ditch 3. Also it is assumed 
that the flow depth at the end node of ditches 1 and 2 is equal to that in the first node of ditch 3. This 
follows from the energy equation where the velocity head and the head-loss terms are considered 
small and may be neglected. From the continuity equation, it follows that the discharge in the first 
node of the ditch 3 is equal to the sum of discharges of the two other ditches (1 and 2) at their last 
node, which is written as: 

m3 m1 m2Q Q Q   (8) 

Equations 6,7 and 8 are simultaneously solved to give the flow depth at the junction point of three 
ditches and the discharges of the three ditches at the same time step. 
The external boundary conditions at the points A and B are described by the following equation: 

A,B A,BinitialQ Q  (9) 

where QA,B initial, are the initial discharge that are calculated by the equation of Manning based on the 
initial depth. 

The equations (10a, 10b) are used at the downstream end of the ditch 3: 
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where k represents spatial node and j represents time 
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Finally, in order to avoid floating point errors in numerical solution of the Saint-Venant equations, the 
initial flow depth is assumed to be equal to a very small value. This may be considered that is the 
result of the existence of groundwater flow to the drainage ditches. 
 
STABILITY CRITERIA 

The time step in the MacCormack scheme, like other explicit schemes, must satisfy the Courant-
Friedrich-Lewy (CFL) stability criterion: 
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where Cn is the CFL number and C is the celerity of small disturbances. 

However, in case of flow with very small depth values and large roughness coefficient values, the 
criterion of CFL is not sufficient to assure stability of the MacCormack scheme. Terzidis, 1968 by 
applying the John von Neumann stability analysis to the simple diffusion type explicit computational 
scheme showed that two criteria are required to assure stability. For flows with small depth values 
and large roughness coefficient values the dominant criterion seems to be the friction criterion. For 
the studied case the friction criterion takes the following form (Pantelakis 2010, Pantelakis et al., 
2011): 

4/3

u

2

AR
t

gn Q
   (12) 

 
APPLICATIONS AND RESULTS 

In order to examine the accuracy of the proposed models, the dynamic model was compared with 
the model presented in the research work of Aral et al., 1996. They approximated the flow routing in 
a channel network consisted by three, prismatic, rectangular channels without lateral flow such as 
Figure 2 shows. The main characteristics of the channel network are given in the Table 1. 
 

Table 1. Input data for the channel network of Aral et al. (1996) 

 Channel 1 Channel 2 Channel 3 

Length 5000 m 5000 m 5000 m 

Bottom width 50 m 50 m 100 m 

Slope 0.0002 0.0002 0.0002 

Manning coef. 0.025 0.025 0.025 

Initial depth 1.43 m 1.43 m 1.43 m 

Initial discharge 50 m3 sec-1 50 m3 sec-1 100 m3 sec-1 

 
Aral et al. (1996) solved the Saint-Venant equations with the relaxation scheme and compared their 
results with those of a model based on the numerical solution of the Saint-Venant equations with an 
implicit scheme. In this research work, the proposed dynamic model was compared with the model 
of Aral et al. (1996) in order to assess the reliability of the proposed hydraulic models. As it is 
obvious from Figure 3, the results of the proposed dynamic model are very close to the results 
obtained by the relaxation scheme of Aral et al. (1996). 

The diffusion and kinematic models were also applied for the same channel network of Aral et al., 
1996. Figure 4 shows that the diffusion model give results that differ from those of the proposed 
dynamic model especially at the area of the peak discharge. The maximum rate of discharge 
computed by the dynamic model was 150 m3 sec-1 and it was occurred after 5970 sec from the 
beginning of flow. The respective values for the diffusion model were 145 m3 sec-1 and 6374 sec. 
Moreover the two models required different values of Courant number for their convergence. The 
dynamic model converged for Cn=0.8 and the diffusion model for Cn= 0.05. The kinematic model was 
not converged for any value of Courant number due to the low slope of canals. 

In order to evaluate the effect of the slope value to the hydrographs formation, the proposed models 
have also been compared for higher slope values (So=0.001 and So=0.005) for the same channel 
network of Aral et al., 1996. Figures 5 and 6 show that the two models, dynamic and diffusion, have 
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Figure 3. Hydrographs at the downstream 

end of the channel network calculated by the 

dynamic model and the model of Aral et al. 

(1996) 

Figure 4. Hydrographs at the downstream 

end of the channel network calculated by 

the dynamic and the diffusion models for 

the application of Aral et al. (1996) 

 
almost identical results for both slope values. In the case of the slope So=0.001, the maximum rate 
of discharge, the time that it was occurred and the Courant number were 214 m3 sec-1, 5990 sec and 
0.8 for the dynamic model, and 211 m3 sec-1, 5720 sec and 0.2 for the diffusion model, respectively. 
In the case of the slope So=0.005, these values were 281 m3 sec-1, 4251 sec and 0.8 for the dynamic 
model, and 280 m3 sec-1, 4233 sec and 0.5 for the diffusion model, respectively. As it is obvious from 
the Figures 5 and 6 the accuracy of the proposed dynamic and diffusion models depends on the 
slope of channels. Their results are almost identical as the slope of channels become steeper. Also it 
was found that the kinematic model was not converged for the channel slope So=0.001 and only in 
case of the stepper slope So=0.005 gave results that were almost identical with the results of the two 
other proposed models. Nevertheless, the maximum rate of discharge was 292 m3 sec-1 and 
occurred after 4233 sec from the beginning of the flow. The Courant number value was 0.5. 

In addition, all the proposed models were applied in case of a drainage network consisted by four 
drainage canals with tertiary canals receiving as lateral inflow the overland flow from irrigated fields, 
as Figure 1 shows. The overland flow caused by intense rainfalls has been simulated by runoff 
models based on Saint-Venant equations (Pantelakis, 2010). 
 

  
Figure 5. Hydrographs at the downstream end 

of the channel network calculated by the 

dynamic model and the diffusion model for 

channel slope So=0.001 

Figure 6. Hydrographs at the downstream 

end of the channel network calculated by the 

dynamic, the diffusion and kinematic model 

for channel slope So=0.005  
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Main characteristics of this kind of drainage network are the small bed slope of canals (So<0.0004) 
and the length of the tertiary canals. Their length determines mainly the geometrical and the 
hydraulic characteristic of the entire drainage network. As we have mentioned above, the channel 
slope affect significantly the accuracy of the hydraulic models. A similar effect has the length of the 
tertiary ditches as it can be seen in Figures 7 and 8. These results were derived for a Manning 
roughness coefficient value n=0.1. This value means that the drainage canals are poorly maintained. 
The bed slope of the tertiary canals is So1,3=0.0003 and the bed slope of the canals 2 and 4 is 
So2,4=0.0004. 
The maximum rate of discharge, the time to peak and the Courant number of the dynamic and 
diffusion models are given in Table 2. 
 

Table 2. The maximum rate of discharge, the time to peak and the Courant number of the 
two models for different lengths of the tertiary ditches 1, 3 

 

Length1,3=1000 m Length1,3=2000 m 

Dynamic 

model 
Diffusion model Dynamic model Diffusion model 

Qmax 0.630 m3 sec-1 0.603 m3 sec-1 0.993 m3 sec-1 0.989 m3 sec-1 

Time 18663 sec 18489 sec 19150 sec 19068 sec 

Courant number 0.5 0.01 0.5 0.01 

 
Figures 7 and 8 show that the results of the two models become closer to each other as the length of 
the tertiary ditches changes from 1000m to 2000m. Also the Courant number value of diffusion 
model becomes lower (0.01) in both cases. Moreover, the kinematic model was not converged due 
to the small slope of the ditches. For a lower Manning roughness coefficient value n=0.03, which has 
the same result as a lower bed slope value, the diffusion model may not converge or it may require a 
Courant number value lower than 0.01. 
 

  

Figure 7. Hydrographs at the downstream end 

of a drainage network where the length of 

tertiary ditches is 1000 m and Manning 

coefficient is n=0.1 

Figure 8. Hydrographs at the downstream end of 

a drainage network where the length of tertiary 

ditches is 2000 m and Manning coefficient is 

n=0.1 

 
Figures 9 through 12 present the results of the proposed dynamic model for both values of Manning 
roughness coefficient (n=0.1 and n=0.03) and for both values of tertiary canals’ length (L1,3=2000m 
vs L1,3=1000m). The lower value of Manning means that the drainage systems of canals are well 
preserved. Figures 11 and 12 present the computed depth values for the above cases. 
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Figure 9. Hydrographs derived by dynamic model 

at the downstream end of a drainage network 

where the length of tertiary ditches is 2000 m and 

for both value of Manning coefficients n=0.03 and 

n=0.1 

 

Figure 10. Hydrographs derived by dynamic model 

at the downstream end of a drainage network where 

the length of tertiary ditches is 1000 m and for both 

value of Manning coefficients n=0.03 and n=0.1 

  

Figure 11. Flow depth values derived by dynamic 

model at the downstream end of a drainage 

network where the length of tertiary ditches is 

2000 m and for both value of Manning coefficients 

n=0.03 and n=0.1 

Figure 12. Flow depth values derived by dynamic 

model at the downstream end of a drainage network 

where the length of tertiary ditches is 1000 m and 

for both value of Manning coefficients n=0.03 and 

n=0.1 

 
 
From Figures 9, 10, 11 and 12, it is observed that the lower value of the Manning coefficient resulted 
in large discharge values with small flow depth values. The maximum discharge rate is increased 
61% for the length of tertiary ditches L1,3=2000m and 38% for the second case of tertiary ditches 
L1,3=1000m. As far as the flow depth values are concerned, the reduction is about 25% for the first 
case and is about 30% for the second case. Moreover the lower value of Manning coefficient leads 
to a shorter base of hydrographs. This means that the increasing and the reduction of the discharge 
completed in a short time but with lower flow depths. 
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CONCLUSIONS 

The basic conclusions drawn for this research are concentrated on: 

1.  Models based on the numerical solution of the Saint-Venant equations with the explicit 
MacCormack computational scheme can be effectively used instead of complicated implicit 
schemes for the simulation of flow routing in a network of drainage canals.  

2.  The accuracy of the diffusion model and the kinematic model to predicting flow in a channel 
network depends on the geometrical characteristics of the channels, such as the bed slope and 
the length. The results of these models are closer to those of the dynamic model as the bed 
slope and the length of the channels increase. 

3. In case of a system of drainage canals within surface irrigation system where the bed slopes of 
the ditches are very small, the kinematic model seems to be less effective for the simulation of 
flow routing. Moreover the kinematic model is not able to simulate the backwater effects which 
often occur in this kind of canal networks. 

4.  The diffusion model may give results almost identical with those of the dynamic model but it 
requires small Courant number values, which has as a consequence longer execution time. 
This problem may be important in case of a huge drainage network. 

5.  The lower value of Manning coefficient leads to higher values of discharge and lower value of 
flow depths. This means that proper maintenance of the system of drainage canals is crucial for 
its response to safely convey the excess water. 
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