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ABSTRACT

Air pollution forecasts in major urban areas are becoming a problem concerning the day to day envi-
ronmental management for city authorities. This paper describes the development of an application to
forecast the peak ozone levels with the aid of meteorological and air quality variables, in the Greater
Athens Area. For this purpose, a number of regression models were considered, while the selection of
the final model was based on extensive analysis and on literature. The model adapted includes variables
that are available on a daily basis, so as daily operational maximum ozone concentration level forecast

can be achieved.
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INTRODUCTION

In an effort to forecast air quality (AQ) daily, many
different kinds of models have been developed
(Robeson and Steyn, 1990; Yi and Prybutok, 1996;
Millionis and Davies, 1994a, b; Rao and
Zurbenko, 1994; Zannetti, 1990). The worldwide
concern about this continuing environmental
problem reinforces the need for more accurate
and, at the same time, more easily applied models.
Methods for AQ forecasting are required in par-
ticular for predicting the worst air quality situa-
tion. This paper focuses on forecasting of peak
photochemical pollution episodes associated to
ozone. High ozone concentrations may cause
adverse health effects particularly for sensitive
population groups, affect ecosystems harmfully

and corrode materials. As contemporary urban air
pollution is strongly related to high ozone levels, it
is essential to develop forecasting models that will
allow for a prediction of air quality levels related
to maximum ozone concentration, being useful in
everyday environmental management for city
authorities. These model applications also support
air quality assessment for which monitoring of
meteorological and AQ variables is a necessity.

The complexity in AQ assessment and manage-
ment in cities lies in a series of difficulties, extend-
ing well beyond the boundaries of the atmospher-
ic physics, that include the role of turbulence and
atmospheric stability, air flow and pollution dis-
persion in the surrounding of buildings and street
canyons, inherent uncertainties in the estimation
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The Greater Athens Area and the location of the AQ monitoring network stations (asterisks). The

meteorological station location, NOA, is identified with a cross (+). Contours are every 200 m.

of basic atmospheric physics parameters etc. Air
pollution is a problem that can not be treated
independently of the urban web. One has to con-
sider the urban environment as a multi-dimen-
sional, multivariable system, part of which is the
AQ aspect, that also includes the layout of the
city, the existence of green and un-built areas, the
geometry, the architectural morphology and the
thermal properties of the buildings, the vehicular
traffic, the stationary thermal systems and of
course the local microclimatic conditions.

Photochemical processes leading to ozone forma-
tion in the atmosphere are complex and non-linear
(de Leeuw, 2000; MacDonald et al., 2001;
Blanchard, 2000). Still, the dispersion conditions
are sensitive to meteorological changes in condi-
tions (NRC, 1991; EPA, 1999). Indeed, it is this
dependence on meteorological and AQ variables
that will be exploited in the present paper.

The majority of approaches to meteorological
adjustment of ozone are in some sense regression-
based, with widely varying degrees of complexity.
These approaches model the average behaviour of
selected parameters and their structure can be
divided in three broad categories: linear regression,
regression trees and non-linear regression (Wilks,
1995). It should be noted that regression models are

generally site dependent. Chock et al. (1975) high-
lighted that there is no guarantee as to the relia-
bility of the model once it is extrapolated beyond
the range of the input data used to obtain it.

METHODOLOGY

In the present paper a 10-year long data set of
maximum daily O, observations is being used
(1990-99). The maximum daily values were
obtained by extracting the maximum ozone levels
of a dataset of hourly ozone concentrations
through a 24 four hour period as it resulted from
the operation of the air quality monitoring net-
work in the city of Athens, Greece. This network
consists of ten air quality monitoring stations,
which have been operated by the Hellenic
Ministry of Environment, Planning and Public
Works, Directorate of Air and Noise Pollution
from the late eighties, providing hourly values for
a number of AQ parameters. All stations are
carefully validated, and their observations should
be considered as valid and accurate (Figure 1).
More technical details on the methods and instru-
ments implemented for the present data collec-
tion can be fund on the report "Atmospheric
Pollution in Athens-1996" (Directorate of Air and
Noise Pollution, 1997).
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The city of Athens is situated on the west coast of
the Attica peninsula. Mountains acting as physi-
cal barriers with few gaps between them surround
the whole basin, which is open towards the sea to
the south. Sea breeze circulation influences AQ
in the area, while the etesian wind, a synoptic
scale seasonal north-north-easterly wind, is the
main system that could reduce the possibility of
prolonged photochemical pollution episodes dur-
ing summer periods (Lalas et al., 1987).
In the present paper, the data set collection con-
sists of 10-year long daily observations of
® maximum ozone concentration levels (consist-
ing of pairs of values related to "present" and
"previous" day conditions in ug m3),
® maximum ozone concentration levels until
13:00 p.m. (ug m) coming from the AQ moni-
toring network,
® maximum and mean daily temperature (°C),
® total solar radiation (W m2), and
® mean wind speed (m s'), coming from the
meteorological observation station of the
National Observatory of Athens for the same
time period.
The choice of meteorological variables was based
upon selecting those that were generally available
and widely accepted as being associated to ozone
formation (Gardner and Dorling, 2000; van Aalst
and Leeuw, 1997; Thompson et al., 2001), since
this would facilitate the results of this work being
applied in a forecasting mode: Temperature plays
a crucial role, as with increasing temperature, the
ozone concentration is expected to rise. Another
favourable condition is the wind speed, as mixing
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drops with lower wind speeds, while photochemi-
cal reactions, which represent one source of
ozone formation, depend on the amount of solar
radiation (Rappengluck et al., 1993).

SPSS for Windows software (version 10.0) was
used throughout this paper to fit a regression
model as well as to manipulate many other "good-
ness of fit" tests (www.spss.com). List wise treat-
ment was applied in cases of missing data, which
means that a case would be eliminated if it had a
missing value for any variables on the list. The pro-
portion of missing data used in the development of
the desirable equation is about 2%, that is about 65
cases should be excluded from the dataset.

Data analysis begins by examining each variable
independent of the others. A first insight of the
variables is obtained by considering the dot plots,
where each dot represents a measurement of the
variable plotted, and provides the location, range
and distribution of each one separately. This infor-
mation is reinforced by some basic summary statis-
tics, such as mean — the arithmetic average, medi-
an, standard deviation from the mean, skewness —
the departure from the mean in a continuous dis-
tribution — and kurtosis — concerning the distribu-
tion’s tails in the graphical form. Examination of
these results reveals that the distribution of maxi-
mum ozone concentration is not normal (Figure 2
(a)). Because of the fact that linear regression
analysis is a method that requires the data to be
normally distributed, the logarithmic transforma-
tion may be employed in ozone (EPA, 1999), in
order to fulfil this basic assumption. In Figure 2 (b)
is obvious that the transformed variable of O,,
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Figure 2. Normality test for the O, (a) and transformed InO, (b) data.
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InO,, fits a normal distribution. It is of course desir-
able to reduce the likelihood of data errors, which
can lead to misleading results.

The distribution of original and transformed
observations, indicated by bars, compared to a
normal distribution.

Secondly, scatter plots of the response variable
against each predictor variable can aid in deter-
mining the nature and strength of the relationship
between the coupled variables and in identifying
gaps in the data points as well as outlying data
points. Scatter plots between couples of predictor
variables are helpful for studying the bivariate
relationships among each other, finding gaps and
detecting outliers, extremely high or low cases
that do not follow the usual pattern. In addition,
a complement to the scatter plot is the Pearson
Product Moment correlation matrix. This matrix
contains the correlation statistic, which measures
the strength of linear relationship between vari-
ables. The analysis of the specific data suggests
that there is an almost linear relation between the
response-ozone and predictor variables that
becomes more evident taking the log-ozone and
the predictor variables instead. Moreover, it
seems that maximum and mean day temperatures
are highly correlated, and so are maximum ozone
concentrations of the previous day and maximum
value until 13:00 of the day of interest. Maximum
day temperature and previous day maximum
ozone concentration levels are also correlated,
therefore one of them may be included in the
model. The total solar radiation does not seem to
contribute efficiently to the model building, as
Munn (1975) has already suggested. Moreover,
because of the high correlation of temperature
and solar radiation, the former is expected to act
as a natural surrogate for the latter. Of all meteo-
rological variables examined, air temperature has
the strongest correlation with maximum ozone
concentration, with the previous day ozone to fol-
low. Finally, all variables except wind speed are
positively correlated, meaning that increase of
their level results in higher maximum ozone con-
centration, while in windy weather, the develop-
ing conditions increase the dilution and the dissi-
pation of the pollutant.

However, rarely are assumptions not violated, one
way or another, in regression analysis and other
statistical procedures. Carrying out regression
without considering possible violations of the
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assumptions can lead to results that are difficult to
interpret and apply (SPSS, 1993). Besides, for
some problems the relationship between the
response and the variables is too complicated to
be explained by a simple linear model of this type.
The attempt to find a satisfactory forecasting
model included the development of a wide variety
of models and the detailed examination of poten-
tial non-linear data transformations and interac-
tions between predictor variables, in order to bet-
ter capture ozone behaviour. When considering
such kind of models the selection may become
problematic too, due to their complex require-
ments. In addition, Gardner and Dorling (1998)
pointed out that the relation between the meteo-
rological variables analysed and the daily maxi-
mum ozone concentration may be represented
satisfactory by a linear model. Linear regression
modelling combining ozone concentrations and
meteorological values has repeatedly being sug-
gested in McCollister and Wilson (1975), Robeson
and Steyn (1990), Chaloulakou et al. (1999).
Given additional predictor variables, it is possible
that this may no longer be the case. Specifically,
for this analysis, the linear model was developed
in the most simplistic manner without variable
interactions, such as temperature-wind speed
interaction and other combinations of meteoro-
logical variables, as the investigation showed that
there was no obvious improvement concerning
the particular dataset. The development set
includes the first 9-year long observations (1990-
1998), which correspond to 3286 values
(n=3286), while the rest 365 (1999) were used as
the validation set.

A natural measure of the effect of the meteoro-
logical variables in expressing the ozone concen-
tration levels is the coefficient of determination,
R? (Draper and Smith, 1981). The larger it is, the
more satisfactorily the model fits the data.

In addition, through a study of residuals, many
types of model inadequacies and violations of the
underlying assumptions can be discovered. The
model diagnostic checking can be done easily by
graphical analysis of residuals, for example by
plotting a normal probability plot of the residuals.
If the underlying error distribution is normal, this
plot will resemble a straight line. Moreover, the
plot of residuals versus time or fitted values
should have no structure and be randomly scat-
tered throughout the plot.
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RESULTS AND DISCUSSION

A first order regression model based on all pre-
dictors was fitted to the given dataset of the years
1990-98 to serve as a starting point. The coeffi-
cient of determination of the model equals to
0.593, indicating that all included variables
accounts for the 59.30% of the original variation
in the response variable, while the rest 40.70%
represents the variation of the residuals. Various
other first order models were fitted with different
numbers of predictor variables included, and
many residual plots were prepared.

The diagnostic check of many potential subsets
of predictor variables suggests that maximum day
temperature, maximum ozone concentrations of
the previous day and the mean wind speed
should be included, as they are capable to fit the
data satisfactorily. The excluded variables are
maximum ozone levels until 13:00 p.m., mean
daily temperature and total solar radiation.
According to the physical explanation, mean daily
temperature is a less favourable condition to
ozone formation as it is not representative of the
photochemical potential of the atmosphere.
Regarding the total solar radiation factor, even
though it has significant physical meaning to ozone
formulation, it is emitted mainly because of its
large proportion of missing values in the dataset,
leading to little improvement in the model. The
resulting suggested model is the following:

[0,]=2.169+0.170* max temp +
+0.487* prev [0,]-0.00618* ws 1)

where [O,] is the ozone concentration,
maxtemp is the maximum daily temperature,
prev[O, ] is the maximum ozone concentra-
tion of the previous day,
ws is the mean wind speed.

The values of the coefficients are consistent with
the physical effect of the respective variables. The
coefficient of the maximum ozone concentrations
of the previous day is expected to have the greater
positive value in accordance with the fact that it is
the highest correlated with ozone episodes, fol-
lowed by the maximum day daily temperature. On
the contrary, the coefficient of the wind speed has
a negative sign, stating its preventing role to
ozone formulation.

Normality analysis shows that residuals are close
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to a normal distribution (Figure 3), as well as the
scatter plot versus time reveals no obvious pat-
tern, meaning that the independence assumption
for the errors is not violated. Moreover, the plot
of the residual against the fitted values (Figure 4)
does not show any unusual pattern, suggesting
that the former are unrelated to any other vari-
able including the predicted response and hence
no further variance - stabilising transformation
has to be applied.

Meanwhile, the coefficient of determination is
slightly reduced compared to the one of the full
model, and the variation explained comes up to
58.50%. This decrease is expected when the num-
ber of variables used is reduced.

Trying to check the adequacy of the former
model, the predicted ozone concentrations were
calculated for the following year (1999). Figure 5
displays the sequence of the true evaluation
dataset and the predicted values; although there
is a slight tendency for underestimating high
observed concentrations, the agreement between
observed and predicted values is generally good.
In addition, the simple persistence model ([O,] =
prev[O,]) was developed so as to obtain a com-
parison parameter. Statistically, the latter model
violates some basic assumptions; for example the
error term is not normally and independently dis-
tributed, as some kind of pattern is present at the
scatterplot against the fitted values. This should
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Figure 4. Scatterplot of the error term against the predicted value.
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Figure 5. Time sequence of observed and fitted values using the model of eq. (1).

be expected, considering the high correlation
between the predictor and the explanatory vari-
able.

Though the ability to forecast is quite satisfactory,
the overall performance of the account for the

empirical pollution forecast procedure performed
by PERPA (Mantis et al., 1990). For comparison
reasons, Table 1a and 1b present a range of sta-
tistics of the persistence model and those of the
model suggested above, as recommended by
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Table 1a. Statistic estimates for the comparative assessment of the model of Eq. (1) and the persistence model.

Number of observations

Observed mean

Predicted mean

Observed standard deviation
Predicted standard deviation
Normalised mean difference (NMD)
Mean absolute error (MAE)
Mean percentage error (MPE)
Root mean squared error (RMSE)
RMSE Systematic

RMSE Unsystematic

Index of agreement (IA)

Correlation coefficient

Model of eq. (1) Persistence model
365.000 365.000
136.126 136.126
142.735 149.651

49.781 49.781
42.319 55.729
0.048 0.099
26.928 26.950
2.384 3.104
32.594 37.756
18.369 21.582
26.925 30.979
0.863 0.867
0.769 0.779

Wilmott (1982, 1985), which show a good overall
model performance for both. More specifically,
the observed and predicted standard deviations
quantify the amount of the variance the model is
capturing compared to the observed data. Two
often mentioned measures of residual error
include the mean absolute error (MAE) and the
root mean squared error (RMSE) which sum-
marise the difference between the observed and
modelled concentrations. The latter can be
decomposed in the systematic RMSE, which is
due to the model performance and the predictors
included, and unsystematic RMSE that is due to
residuals, factors that cannot be controlled. A
good model is considered to have an unsystematic
RMSE much larger than the systematic RMSE.
The value of RMSE of the suggested model of
equation (1), 32.594, is smaller than the value of
the persistence model, 37.756, indicating a better
performance of the former. A more useful mea-
sure of model performance is provided by the
"index of agreement" (IA), which is defined as
(Wilmott et al., 1985):

Slp-of

IA=1- = )

> (|r-0}+jo-ol)

where P, and O, are the predicted and observed
concentrations respectively. The index of agree-

ment ranges between 0 and 1, with 0 stating worst
agreement, and best agreement given by the
limiting case of 1. In this case, the index of agree-
ment is similar for both models, expressing simi-
lar forecasting skills. Table 1b also presents statis-
tical indices of forecasting performance related to
the ozone alarm threshold.

False alarm rate, the percent of times an alert day
was forecasted that did not actually occur, is
reported. A reliable model requires not only hav-
ing a large percentage of successful forecast but
also a percentage of false positives as small as
possible (Jorquera et al., 1998). The critical suc-
cess index (CSI or Threat score) verifies how well
the high pollution events were predicted and it is
unaffected by the number of correctly forecasted.
This is defined as (Wilmott et al., 1985):

csr—— A4 3)
A+B+C

with A expressing the observed and forecasted
alarms days
B expressing the observed but not forecast-
ed ones and
Cexpressing the forecasted but not
observed ones.

Generally, it is interesting to note that as the alarm
level decreases, the forecasting performance is
improved. Furthermore, model of Equation (1)
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Table 1b. Forecast skill for O, episodes using the model of Eq. (1) and the persistence model.

Model of eq. (1) Persistence model
If alarm: [O,]>180
number of observed alarms 66 66
number of predicted alarms 49 107
number of days with correct alarm 25 42
percentage (%) of days with correct alarm (POD) 37.89% 63.64%
number of days with false alarm 24 65
percentage (%) of days with false arm 48.98% 60.75%
Critical Success Index (CSI) 0.278 0.321
A 25 42
B 41 24
C 24 65
If alarm: [O4]>170
number of observed alarms 94 94
number of predicted alarms 79 128
number of days with correct alarm 51 65
percentage (%) of days with correct alarm (POD) 54.25% 69.15%
number of days with false alarm 28 63
percentage (%) of days with false alarm 35.44% 49.22%
Critical Success Index (CSI) 0.418 0.414
A 51 65
B 43 29
C 28 63
If alarm: [O4]>160
number of observed alarms 113 113
number of predicted alarms 108 146
number of days with correct alarm 80 88
percentage (%) of days with correct alarm (POD) 67.80% 74.58%
number of days with false alarm 28 58
percentage (%) of days with false alarm 25.92% 39.73%
Critical Success Index (CSI) 0.5479 0.500
A 80 88
B 38 30
C 28 58

has a lower proportion of correct and false alarm
days, no matter of the critical maximum ozone
level adapted (180 pug m3, 170 ug m=3, 160 pug m=3),
resulting in a slightly better Critical Success Index
than the persistence model only in the last two
cases, where the maximum ozone threshold is
170 ug m- or 160 ug m3. However, the proportion
of false alarm days of the persistence model is
much higher, indicating of the incapability of the
latter to be used in a reliable operational AQ fore-

casting system. In addition, it should be mentioned
that the scatter of the observations influences the
degree of accuracy of the models developed
(American Meteorological Society, 1978). It has
also been pointed out that in situations such as the
comparison of data generated by collocated air
quality measurements systems, there is no real
separation into dependent and independent vari-
ables, and deviations between fitted and observed
data values will occur in both x and y directions
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due to random measurement errors. Hence, the
reduced major axis (RMA) method (Davis, 1986)
recommends the linear fit to be achieved by
minimising the product of the x and y deviations
between the data and the fitted values. The latter
was also demonstrated recently by Ayers (2001),
who suggested that a reduced major axis regres-
sion, rather than standard linear regression, is
likely to be the method of choice for the regres-
sion analysis of air quality data sets.

CONCLUSIONS

A linear model has been used for the regression
and prediction of daily air pollution levels con-
structing an operational peak ozone concentra-
tion forecasting module, developed from scratch,
for the Athens basin, Greece. Maximum tempera-
ture, maximum ozone level of the previous day
and wind speed proved to be the most essential
factors that influence ozone concentrations.
Regarding the persistence model, it seems to be
acceptable, but the extremely large proportion of
false alarms should be considered together with
the operational requirements of the system as the
principal limitations.

The general inspection of this research confirms
the difficulties arising in statistical atmospheric
modelling. The low prediction ability of the
model is not surprising, since a stochastic, random
component in the regression will always exist and
remain unexplained. For this reason, the RMA
method is considered to be developed in the
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