
INTRODUCTION
A great variety of environmental data written in
paper format are at present available and it often
seems useful to recover them by digitisation. In
fact data referring to the past, if transferred on a
digital support, can furnish information contents
not repeatable in the future. The problem of
checking data recorded by hand has never been
studied before both because it has arisen recently
and because it is different from those related to
the automatic data acquisition.
These problems concern the missing data and the
outliers of time series (and, symmetrically, spuri-
ous errors) since an uninterrupted time series

gives far more information than two separate
ones with a missing interval. As for the outliers,
although they provide important information as
they represent exceptional events, they can (also)
lead to blunders if their exceptionality is due to
spurious errors.
Data comparison techniques deal with important
scaling problems, especially when the data sam-
pling involves different scales.
It is in turn evident that each datum is related
with its error and it is really impossible to make
corrections of the data individually by hand: an
automatic checking procedure is needed to get an
insight into data representativeness and quality.
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The missing data, the outliers and the quality
problems call for the availability of a model
whereby one can generate simulations and com-
pare them with real data. By such a model one
can produce almost true events that make up for
the missing ones and also control the exceptional
events. Recreating the mechanism of the process
is unnecessary because it is irrelevant how the
model produces data.

NEURAL NETWORK APPROACH
Artificial Neural Networks (ANNs) are a suitable
model for the aforementioned purposes, provided
that efficient architectures are available. An ANN
can be viewed as a computer system that is made
up of several simple and highly interconnected
processing elements (McClelland, 1986) which
process information by their dynamic state
response to inputs. They provide a powerful tool
for problems difficult to solve by traditional
approaches, and frequently many of them have
been addressed with neural networks: e.g. analy-
sis of seismic signals (Romeo et al., 1995), control
of chaotic dynamical systems (Alsing et al., 1994),
predicting grassland community (Tan and
Smeins, 1996) or solar radiation (Elizondo et al.,
1994), classification of remotely sensed data
(Blamire, 1996; Côte and Tatnall, 1995), air qual-
ity control (Nunnari et al., 1998; Gardner and
Dorling,1999; Soia and Soia, 1999).
The neural architecture used in this work is the
feed-forward back-propagation1 consisting of only
two layers of multiple neurons (the input and hid-
den layer) and of a single neuron in the output
layer. The input layer is the only one made up of
linear neurones. This architecture, where every
non-linear neurone (of the hidden and output
layer) is connected with every neurone of the pre-
vious layer by weighted links and is activated by
the sigmoid transfer function ,
is cited as the most suitable for pollution predic-
tion problems (Boznar et al., 1993).
The performance of this type of ANN seems
insensitive to the choice of the activation function
so that the multi-layer feed-forward architectures
have the potential of being universal learning

machines (Hornik, 1990) and can give an arbi-
trarily accurate approximation to every function
(Hornik et al., 1990). The feed-forward back-
propagation learning procedure is driven by opti-
mum criteria so that these ANNs are the most
suitable for describing past experience without
copying (Ruiz-Suârez et al., 1995). The input sen-
sitivity analysis of the ANNs used has been per-
formed by retraining the networks without some
selected inputs and observing the changes in the
network outputs. ANNs are particularly useful for
investigations on large data sets and for problems
with input/output relationships only partially
known. In fact, ANNs can overcome these diffi-
culties because they are model-free working
under the only hypothesis that the input variables
(experimental space) form an almost complete
phase space. In this space the best auto-regressive
(AR) model can become a particular case (the
linear limit) of an ANN, whereas the determinis-
tic mathematical models simulate some conceptu-
alized (subjective) process sometimes using a
parameter space larger than the experimental
one.
The approach adopted in this work makes use of
the time and space information collected by the
monitoring networks and generalises other classi-
cal methods (the class of ARMAX models, see
Appendix). For example an ANN with a linear acti-
vation function and with no hidden layers is equiv-
alent to a multiple linear regression (Marzaban
and Stumpf, 1996), moreover it is possible to show
that a feed-forward back-propagation ANN with
only one output neuron and with linear transfer
function is a linear multivariate function of input
variables. ANNs are �grey box� models if they
account for the mechanisms of controlling process-
es by incorporating selected working conditions:
this may be done by combining weight analysis,
input-output sensitivity analysis, changes of net-
work architecture, and physical information about
the data set available (Benvenuto and Marani,
2000). The ANNs implemented in the present
work, with a single hidden layer, were able to
explain over 90% of the variance of the environ-
mental phenomena investigated.

f x 1/ 1 e xa f d i= + −
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1 The word feed-forward refers to the propagation of the information through the net (from the input layer to the output neu-
rone); the word back-propagation refers to the learning algorithm, which, with the aim of decreasing the error, proceeds by iter-
ations from the output neurone back to the input layer.
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APPLICATIONS AND RESULTS
This work presents an overview of problems (and
related findings) concerning the possibilities of
using ANNs both as risk warning (nowcasting and
forecasting) and as data interpolator, which take
account of the data preceding and following the
present datum. Moreover, topics regarding ANNs
utilised as territorial homogeneity selectors have
been considered, which could be useful, for exam-
ple, to determine the boundaries of aerological
basins.
Before use, the data set has been made �uniform�
by removing days with errors or missing data
(approximately 5% of the data set) and by nor-
malization between 0.2 and 0.8 (in order to
improve network sensitivity) thorough the rela-
tion (Ij=observed value, Imin and Imax=respective-
ly the minimum and maximum value of the data
set):

(1)

Before comparisons with experimental data, the
ANN outputs was rescaled by inverting the equa-
tion (1) (Comrie, 1997); these procedures provide
comparable data ranges and avoid the asymptotes
of the sigmoid function.
The data were organized as sets of independent
vectors consisting of values of input and output
variables. These sets were divided, via random
drawing without replacement, in two subsets: the
former for the training phase and the other, the
complementary one, for the testing phase (even
not less than 40% of the entire data set). The
extraction procedures were repeated several
times to have an objective set of parameters for
checking the statistical quality of neural architec-
tures.

Forecasting
A problem arising from time series analysis is to
forecast (medium/long term) or to nowcast (short
term: 1 or 3 hours) the system�s evolution.
Predicting of photochemical smog is an example
of complex data modelling because the processes
involved are detected by measuring at only a few
ground sites chemical indexes which depend on
partially known chemical mechanisms, on poorly
understood emission fields and on uncertain tur-
bulent mixing and transport phenomena. The
data sets used in this work (Liguori, 1996) consist

of hourly mean concentrations of air pollutants
and meteorological parameters recorded at dif-
ferent urban sites during 1995 in Mestre (Venice,
Italy - Figure 1).
The monitoring network is described in Table 1
and included meteorological parameters from a
private monitoring network (Ente Zona
Industriale di Porto Marghera), data from the air-
quality network of the Venice Municipality, and
data on vehicle flow rates (Liguori, 1996). The
large database of hourly time series (the shorter
one with 7000 values) allowed preliminary broad
statistical analysis. The ANNs implemented have
been selected trying to achieve both modelling
efficiency and architectural simplicity. The
Pearson�s correlation index with other simple sta-
tistical tests were used (Devore, 1990) as quick
screening criterion of network performances and,
only with the best results, more accurate statisti-
cal analyses were performed (systematic and
unsystematic mean square error (Devore, 1990);
Willimot indexes of agreement, (Willimot, 1982);
probability of detection, missing rate, false alarm

v 0.2 0.6 (I I ) / (I I )j j min max min= + ⋅ − −
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Figure 1. The urban area of Mestre surrounding

Venice with indicated the monitoring net-

works listed in Table 1.
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rate, correct null forecast, critical success index,
true skill score, Heidke skill score, (Wilks, 1995).
An ANNs model for nowcasting hourly O3, CO,
NO2 concentrations at one-hour lag (and, only for
O3, also at three-hours lag) has been implemented
(by SNNS software [SNNS@SNNS Group,
1994]), similar to that of Figure 2, where the net-
work for O3 is reported. The present application
highlights the efficiency of the method and its pos-
sibility of gaining insights into the mechanisms of
the phenomena. The scheme considers each pol-
lutant concentration at the time (t+Ät) as depen-
dent variable of its past concentrations and of
external components such as meteorological data
(Table 1), chemical precursors and, in one case,
also vehicles traffic information2. ANNs architec-
tures similar to that of Figure 2 were able to
explain over 90% of the variability of the next hour
concentrations of the three pollutants considered.

The network for O3 (Figure 2) utilised 10 neurons
in the input layer selected by statistical analysis, 8
in the hidden layer (number chosen after various
empirical attempts) and 1 in the output (fixed a
priori). The 10 input neurons were: four neurons
representing the actual and the three former-
hours ozone concentration [O3(t) and the auto-
regressive component with longest persistence
O3(t-3), O3(t-2), O3(t-1)]; two neurons represent-
ing two chemical variables involved in the photo-
chemical smog mechanism [NO2(t) and non-
methanic hydrocarbons NMHC(t), (Azzi et al.,
1995; Russel et al., 1995)]; and those meteorolog-
ical variables for which the preliminary statistical
analyses have shown more influence on O3 con-
centration [wind velocity WV(t), ground air tem-
perature T(t), solar radiation Rad(t-2)3 and ther-
mal lapse rate ÄT(t)]. The good results were also
confirmed by the contingency tables and by the
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Table 1. Parameters measured at the monitoring stations, THC = total hydrocarbons, NMHC = non methane

hydrocarbons, PM10 = particulate suspended matter with diameter of 10 ìm or less. The measurement

units are the following: °C for temperature, m s-1 for wind velocity, degree from the northern direction

for wind direction, hPa for pressure, W m-2 for the global solar radiation, the humidity is expressed as

percentage of saturated air, precipitation as mm, ìg m-3 for the various concentrations, vehicle flow

rates were hourly data, heights are measured in meters (above the ground).

Network Station Parameters Height

Ente Zona
Industriale di

Porto Margera

Venice
Municipality

E1
Temperature 

Wind (velocity and direction)
10

E2 Wind (velocity and direction) 40

E3

Temperature
Pressure

Global Radiation
Humidity

Precipitation

10, 70, 140
10
4
4
0

C1 SO2, NO, NO2, CO, O3, THC, NMHC, PM10 2-8

C2 SO2, NO, NO2, CO, O3, THC, NMHC, PM10 2-8

L1 Vehicles flow rates measuring station �

L2 Vehicles flow rates measuring station �

C3 NO, NO2, CO, O3 2-8

C4 NO, NO2, CO, O3, PM10 2-8

2 This last variable measured at L1 and L2 (Figure 1), resulted highly significative only for CO nowcasting and for O3 spatial
distribution analysis; due to this reason it was omitted from the other basis neural architectures.
3 This is due to a two hours delay observed between ozone and solar radiation time series.
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classical forecast skills (Table 2 and Table 3),
which concern nowcasting of peaks events near
the limits established by the Italian Legislation
(180ìg m-3 is the attention level and 360ìg m-3 is the
alarm level). However, the low presence of high
concentrations influenced negatively the network

ability to predict the exceeding of the Italian Low
thresholds because the output neuron is not
trained enough. Considering the concentration
threshold of 180ìg m-3, the percentage of concen-
tration exceeding the threshold and correctly
recognised by the 1-hour O3 model was more than
70%. In the case of 3-hours O3 model, results were
obviously worse: the output of the network recog-
nised only 1 of 2 values exceeding the threshold of
180ìg m-3. The sensitivity analysis (SA) of the
inputs of two neural architectures relative to O3

nowcasting at 1 or 3 hours ahead (architecture of
Figure 2) confirmed the complexity of O3 now-
casting and showed the role of local meteorology
in the dynamic of this pollutant. In particular, SA
showed the relevance of solar radiation on O3 for-
mation and the low sensitivity to wind velocity
and to thermal lapse rate, and similar weights for
NO2 and NMHC. The residual auto-correlation
was: for the 1-hour O3 model 0.01 at lag 4, and
with all the other values less than 0.04; for the 3-
hours O3 model -0.053 at lag 2, and 0.069 at lag 6,
and 0.114 at lag 14.
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Figure 2. An example of the neural network archi-

tecture utilised for the 1-hour and 3-hour

�nowcasting� O3 model.

1O3≥≥180 ìg m-3 Forecast Yes Forecast No
Observed Yes 42 (A) 17 (B)
Observed No 15 (C) 426 (D)
3O3≥≥180 ìg m-3 Forecast Yes Forecast No
Observed Yes 29 (A) 26 (B)
Observed No 11 (C) 334 (D)

CO≥≥9 ìg m-3 Forecast Yes Forecast No
Observed Yes 2 (A) 4 (B)
Observed No 0 (C) 652 (D)

CO≥≥12 ìg m-3 Forecast Yes Forecast No
Observed Yes 0 (A) 3 (B)
Observed No 0 (C) 661 (D)

COAP ≥≥0.5 ((CO≥≥15 ìg m-3) Forecast Yes Forecast No
Observed Yes 2 (A) 0 (B)
Observed No 0 (C) 1398 (D)
NO2≥≥200 ìg m-3 Forecast Yes Forecast No
Observed Yes 45 (A) 16 (B)

Observed No 16 (C) 626 (D)

Table 2. Verification of the pollutants forecast skill in the testing set utilising standard contingency tables

(Devore, 1990; Wilks, 1995) at different thresholds; A= number of simulated events and observed,

B= number of observed but not simulated, C= number of simulated but not observed, D= number

of not simulated and not observed
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The forecasting of O3 daily maximum values has
also been considered: in fact for human health
what is really important to know is whether the
threshold maximum values could be exceeded,
more than the medium values forecasted. In the
network input patterns hourly concentration has
been replaced by daily maximum concentrations,
and the values of the others parameters measured

at the same time of the daily maximum have also
been included. The architecture used is almost the
same as the one for O3 1-hour and 3-hours now-
casting, but in order to take into account the spa-
tial variability of the phenomenon, the maximum
values measured in the remaining monitoring sta-
tions (different from that of reference) have been
included in the input patterns: in this way an even-
tual scarcity of data could be bypassed. Figure 3
shows the white noise behaviour of the residual
auto-correlation of daily O3 forecasting (observed-
forecasted values) and Table 4 the statistical fore-
cast skill of the network.

Table 4. Statistical skill of O3 daily maximum values

forecasting
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Table 3. Statistical analysis for O3, CO, and NO2 (1O3 means 1-hour lag, 3O3 means 3-hours lag) on the testing

sets based on the contingency tables: (i) the Probability of Detection [POD=A/(A+B)], measures the

percentage of pollutant events that were correctly forecast; (ii) the miss rate [MISS=1-

POD=B/(A+B)] measures the rate at which pollutant events occurred but failed to be forecast;

(iii) the false alarm rate [FAR=C/(C+A)] measures the tendency of the pollutant forecast to over-

predict pollutant occurrences; (iv) the correct null forecast [CNULL=D/(D+C)] measures the fore-

cast skill at predicting �clean� days, it is the skill at which non events are forecast; (v) the critical suc-

cess index [CSI=A/(A+B+C)] or threat score combines forecast occurrences without regard to suc-

cessful null forecast; (vi) the true skill score [TSS=POD+CNULL-1] or Hanssen Kuipers skill score

includes the success of null forecast in the form of a ratio of observed skill to perfect forecast skill, this

measure is not dependent on the relative frequency of occurrence and non-occurrence or the number

of trials (if all forecasts are correct TSS=1, if all forecast are incorrect TSS=-1); (vi) the Heidke skill

score {S=2(AD�BC)/[B2+C2+2AD+(B+C)(A+D)]} is often used as a measure of the skill of a set of

forecasts compared to the skill of a random forecast (Wilks, 1995)

1O3≥≥180
ìg m-3

3O3≥≥180
ìg m-3

CO≥≥9
ìg m-3

CO≥≥12
ìg m-3 COAP≥≥0.5

N O2≥≥200
ìg m-3

POD 0.71 0.53 0.33 0 1 0.74
MISS 0.29 0.47 0.67 1 0 0.26
FAR 0.26 0.28 0 - 0 0.26
CNULL 0.97 0.97 1 1 1 0.98
CSI 0.57 0.44 0.33 0 1 0.58
TSS 0.68 0.50 0.33 0 1 0.72
S 0.69 0.56 0.5 0 0.5 0.71

Figure 3. Residual (observed-forecasted values)

auto-correlation of O3 daily maximum val-

ues: white noise behaviour is evident.

POD 0.75
MISS 0.25
FAR 0.38
CNULL 0.88
CSI 0.52
TSS 0.63
S 0.58
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Regarding the forecasting of CO peak values
exceeding a fixed threshold, it has been success-
fully performed by transforming the concentra-
tions time series into another one representing
the probabilities of exceeding the attention
threshold and then processing the transformed
data by an ANN. This method was applied with a
network (COAP) implemented to nowcast the CO
next-hour probability of exceeding the attention
level (15 ìg m-3). COAP has a similar architecture
to the previous ones: 11 input, 8 hidden and 1 the
output neurones. The model input was composed
of: four neurones PCO(t), PCO(t-1), PCO(t-2),
PCO(t-3) representing the CO probabilities of
crossing the attention level at present time and at
the three former hours (the auto-regressive com-
ponent), three neurones representing meteoro-
logical variables highly correlated with CO
[WV(t), T(t), Rad(t)], by one neurone represent-
ing the chemical variable NO(t) and by three neu-
rones representing the traffic flow [Tr(t), i.e. the
hourly transiting vehicle number]. The day of the
week d(t+1) and time of the day h(t+1). d(t+1)
and h(t+1), being well determined functions, are
contemporaneous values of the output: it could
be done by assigning values n=1,2,..,7 to the neu-
rone representing the day of the week and values
n=1,2,...24 to the neurone representing the hour
of the day. In this way it is possible to introduce
into the models two variables controlling the asso-
ciation between time intervals of more intense
traffic flows and transportation of human beings
for daily/weekly activities. Table 2 and Table 3
show the performances this network obtained in
1-hour nowcasting (0.5 is the corresponding prob-
ability of exceeding the attention level, 15 ìg m-3),
these results were confirmed by the white noise
behaviour of the residual auto-correlation
(COAPobserved - COAPsimulated) always less 0.13 with
only a peak of -0.23 at lag 24. Figure 4 shows:
(part a) original CO time series and the attention
level threshold; (part b) nowcasting of next-hour
probability of exceeding the attention level: even
in this case, all the statistical tests on the model
outputs gave excellent results with respect to the
forecasting of the original concentration time
series (threshold at 9 ìg m-3 and 12 ìg m-3, see
Table 2 and Table 3). It has confirmed the advan-
tage of emphasising highest values in order to
predict the peaks more accurately. The sensitivity
analysis has shown the primary behaviour of CO

due to the high sensitivity of the COAP network
to the traffic flow input variable.
Concerning NO2, three different network archi-
tectures were tested, all with 7 input neurones, 4
of which were always WV(t), T(t), Rad(t), NO2(t)
measured at the same station of NO2. The first
architecture used as input also the NO2 concen-
trations at the three previous times (the auto-cor-
relation was significant only up to lag 3) and 6
neurones in the hidden layer. The second one still
used 6 hidden neurones but substituting as input
the three NO2 neurones with three new ones: the
last three backward discrete time derivatives d of
NO2 [d(t), d(t-1), d(t-2)] with the aim of exploring
the sensibility of the network to the
increasing/decreasing local trend of NO2. The
third architecture used the same input neurones
as the first one, but with two hidden layers, each
composed by three neurones. The performances
of the three different networks were quite similar:
the r�s coefficients for the three cases were r1=.91,
r2=.90, r3=.90 and the corresponding mean errors
were ME1=±11.5, ME2=±11.6, ME3=±11.7. The
satisfactory forecast skills of the first neural
model are shown in Table 2 and Table 3, with the
threshold of 200 ìg m-3. The first model is a little
bit better than both the second and the third one
and the classical forecast skill (performed in the
same way as for O3 and CO) and the white noise
residual auto-correlation have confirmed it. The
SA showed the significant role of temperature
and the non-linear role of wind velocity in the
NO2 formation and transport in this area: among
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Figure 4. (a) original CO time series and the atten-

tion level threshold (15 ìg m-3); (b) now-

casting of next-hour probability of exceed-

ing the attention level.
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all the meteorological parameters considered,
they proved the most closely linked to NO2. It also
showed the role of NO2 short-term persistence,
which proved quite similar to its variation rate
expressed by the time derivative at the same lags.

Interpolation and data quality control
The application of ANNs for data interpolation
oriented to generate or reconstruct missing data
has been proved useful. As an example we
describe here the good results reached in a set of
daily minimum temperatures (Figure 5) including
1035 current data having isolated missing data
and a 61-day interruption. The network was set
up in connection with the gap to be filled: at the
first step the one-day gaps were filled, than the
two-day gaps and so forth. At last, to fill in the 61-
day gap, subsystems with 60-day lags were used.
Results obtained showed that also the 61-day
patch was absorbed in an acceptable manner by
the neural network: it implies that the data avail-
ability deriving from neighbouring stations might
have improved results significantly. Obviously the
larger the lag the larger the network error, any-
way in the described case the Pearson�s correla-
tion coefficient r between measured versus recon-
structed time series resulted r=0.98.

Spatial Analysis
Another successful application of ANNs con-
cerned the spatial analysis of photochemical pol-

lutants using O3 concentrations measured at five
monitoring stations in the Provincia of Vicenza
(approximately 40 km NW of Venice - Italy): i)
Bassano del Grappa [BG], ii) Montecchio
Maggiore [MM], iii) Schio [SC], iv) Valdagno
[VL], v) Western Vicenza [WV]. The data-base
included ground measurements of NO2 and O3

concentrations, meteorological parameters and
traffic flows (i.e. the hourly transiting vehicle
number) (Pastore, 1998). For every station an
ANN with 7 input neurons has been realised: they
are the three meteorological parameters (solar
radiation at two hours before, temperature and
humidity) at the same station and the O3 concen-
trations at the other four. These non-local ANNs
replace then the local information (O3 concentra-
tion at previous lags) with spatially distributed
information (O3 concentrations at different mea-
suring stations).
The results obtained were better than those relat-
ed to the isolated monitoring stations and the per-
formed SA of non-local ANNs allowed the com-
piling of a distance-ranking list (Table 5) of the
five different measuring sites. It can be used as an
objective criterion of connectivity between two dif-
ferent sites of a geographic area, which allows the
defining of boundaries of homogenous aerological
basins. The linear regression relative to the five
stations of the Provincia di Vicenza are shown in
Figure 6: the Pearson�s coefficients, respectively,
were always over r=0.97.

CONCLUSIONS
In the present work it has been shown that some
problems difficult to solve by traditional
approaches can be addressed with ANNs: in par-
ticular ANNs can be used both to forecast air pol-
lutant concentrations in urban areas as functions
of some chemical variables and of local meteoro-
logical parameters, and to interpret their spatial
behaviours, reaching also better results than in
the case where only temporal information is avail-
able. Results obtained confirm the utility of simi-
lar neural architectures for predicting air quality
pollutant concentrations both in industrial and in
urban areas, as shown in the literature (Nunnari
et al., 1998; Garner and Dorling, 1999). ANNs are
suitable for investigations working on large data
sets and for problems in which the inputs and cor-
responding output values are known but the rela-
tionships between the inputs and the outputs are
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Figure 5. Missing daily minimum temperatures and

the recreated ones by means of the neural

network: the original data are coloured

blue, the missing reconstructed values are

coloured pink
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difficult to understand with usual analysis tech-
niques. These conditions are commonly found in
many air quality applications, owing to the rela-
tionships between physical and chemical process-
es in the environmental systems. ANNs do not
eliminate the preparatory work on the data sets:
indeed the data, before being processed, need a
very careful statistical analysis to discover links

between variables in order to avoid redundant
patterns and improve accuracy.
The approach described will be a component for
an air monitoring network implementation in the
urban area around Venice designed to evaluate
regulatory programs in improving ambient air
quality. For example, ANNs could be utilised for
controlling urban air quality pollution by regula-
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Figure 6. Linear regressions of O3 measured versus O3 simulated relative to the five monitoring stations of

Bassano del Grappa, Montecchio Maggiore, Schio, Valdagno, Western Vicenza.

Table 5. ANNs for O3, performed considering the response to perturbations applied to the different input neu-

rons, allowed the compiling of a distance-ranking list between the five different measuring sites. The

value in each box denotes the sensitivity coefficients of each monitoring station with respect to the

remaining four. In the first row and first column are listed the input sites (BG=Bassano del Grappa,

MM=Montecchio Maggiore, SC=Schio, VL=Valdagno, WV=Western Vicenza)

BG MM SC VL WV

Bassano del Grappa (BG) � 1.36 1.52 0.52 0.86
Montecchio Maggiore (MM) 1.59 � 0.54 0.29 2.46
Schio (SC) 2.14 0.56 � 1.68 0.60
Valdagno (VL) 1.23 0.07 1.97 � 0.94
Western Vicenza (WV) 0.34 2.22 0.04 0.81 �
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tion of traffic flows during severe weather condi-
tions. ANNs were confirmed as a computational
approach improving classical models in which the
solution is learned from a set of examples. It is
important to note that ANNs are pattern recogni-
tion diagnostic techniques, with some predictive
skill, allowing assimilation of high quantities of
data. Finally, the following considerations can be
drawn: a) ANNs can provide considerable support
in conducting quality controls on experimental
data; b) results can be better when data from geo-
graphically distributed areas are available; c) in
order to replace missing data or to assess outliers,
it is advisable to conduct series training and fore-
casting on the same sets; d) the weights and SA
provide useful insight into the most important
forecasting variables and their relevant links; e)
ANNs are particularly suitable whenever a large
quantity of data is available (since networks train
by example, the more data they have experienced,
the better the network will perform) and whenev-
er there is no simple solution by traditional tech-
nology.
Results obtained with ANNs have not been com-
pared with those with ARMAX models because
these latter are a particular case of ANNs built on
the same inputs. The difference between ANNs
and ARMAX models operating in the same phase
space lies in the deviation from the linearity pro-
duced by the transfer function used for neurones
activation. In this work, a good implementation of
ANNs with sigmoid transfer function has been
obtained utilising the interval [0.2-0.8] in which
the shifting from the linearity (and consequently
from ARMAX models) is approximately of 10% at
the upper and lower limit.

APPENDIX
The ANNs are product of the artificial intelli-
gence, which miming the natural neurons net-
works, allow expert systems with learning skills. In
this respect they are alternative to the expert sys-
tems based on choice trees driven by �if ... then ...�
relationships. Actually, the literature suggests an
high ANNs variety, often devoted to specific func-
tions such as pattern recognition and ranking. The
most suitable ANNs to interpret environmental
processes (and, among them, the pollution one)
are those known as feed-forward back propagation
because they map inputs to outputs non-determin-
istically (like the natural process, they describe

past experience without copying it) by optimising
forecasting of the learning section. Avoiding com-
plex mathematical proofs, it is possible to reach
evidence of the ANNs ability to generalise classical
models by writing input/output analytical transfor-
mation of a (1,1,1,1) network (Figure 7a) with one
input neuron, two hidden layers with one neuron,
and one output neuron; and of another network
(1,2,1,1) (Figure 7b) with one input neuron, two
hidden layers with respectively two and one neu-
rons, and one output neuron.

Case of Figure 7a) 

Case of Figure 7b)

where 0≤u≤1 was introduced in order to nor-
malise the output Z. For example, in Figure 8 it is
possible to compare the different outputs for dif-
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Figure 7. Two very simple neural architectures: 

a) (1,1,1,1) one input neurone, one hidden

layer with just one node, one output neurone; 

b) (1,2,1,1) is a similar architecture but with

two neurones in the first hidden layer and

only one in the second hidden layer
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ferent values of four weight parameters of the
(1,2,1,1) network of Figure 7b. This example
shows the great flexibility of neural architectures,
much wider than the linear models, for reproduc-
ing different data behaviours. These simple argu-
ments allow the following consideration to be
drawn regarding neural architectures:

i) the general non linearity of input-output con-
nections, including as a special case the linear
limit (the best ARMAX model can become a
particular case of an ANN),

ii) the great importance of hidden neurons as
active neurons capable of doing non linear
transformations via transfer function,

iii) the functional complexity of a neuronal archi-
tecture is related to the number of weights.

291NEURAL NETWORKS FOR ENVIRONMENTAL PROBLEMS

Figure 8. An example of the great variety of possible

outputs that can be obtained by a (1,2,1,1)

network with some different weight values.
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