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ABSTRACT 
In hydrology, as in a number of diverse fields, there has been an increasing use of Artificial Neural 
Networks (ANN) as black-box simplified models. This is mainly justified by their ability to model 
complex non-linear patterns; in addition they can self-adjust and produce a consistent response when 
‘trained’ using observed outputs. 
This paper utilises various types of ANNs in an attempt to assess the relative performance of existing 
models. Ali Efenti, a subcatchment of the river Pinios (Greece), is examined and the results support 
the hypothesis that ANNs can produce qualitative forecasts. A 7-hour ahead forecast in particular 
proves to be of fairly high precision, especially when an error prediction technique is introduced to the 
ANN models. 
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INTRODUCTION 
The temporal and spatial variability that 
characterises a river system makes flow 
forecasting a very demanding task. Flow 
forecasting is a crucial part of flow regulation 
and water resources management, as it is related 
to issues such as drought prevention, flood 
forecasting for dam and human safety and 
ecosystem sustainability. As it is reported, floods 
and droughts kill more people and cause more 
damage than any other natural disaster (WMO, 
92). Consequently, there is a need for systems 
capable of efficiently forecasting water levels or 
discharge rates in rivers.  
Previous work has been supportive of the neural 
networks for flow forecasting; (Imrie et al., 
2000; Minns and Hall, 1996; Minns and Hall, 

1997; Dawson and Wilby, 1998; Dawson and 
Wilby, 1999; Campolo et al., 1999; Liong et al., 
2000). Artificial neural networks provide a fast 
and flexible means for developing non-linear 
flow routing models. However, it has been found 
in previous studies (Minns and Hall, 1996; See et 
al., 1997; Dawson and Wilby, 1998; Campolo et 
al., 1999) that since those networks perform 
poorly outside the calibration range, they cannot 
be reliably used in situations where significant 
events outside the calibration range are 
important. Obviously, flood forecasting is one 
such application since we are often interested in 
the extremes and are regularly faced with a 
limited amount of calibration data.  
Most of the previous work considered 
complicated models and large networks in order 
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to represent the hydrological system as precisely 
as possible; these models have the advantage of a 
good calibration performance, but compromise 
with a poor performance in verification data, as 
they fail to generalise. 
ANN models are considered as they can be 
simple (small networks) yet still keep the non-
linear characteristics required to predict the river 
flow. Comparisons are made between the 
performance of different ANN structures. 
Furthermore, a real-time updating technique, an 
important component of a flood forecasting 
system in our opinion, is applied in order to 
demonstrate the operational performance benefits 
of real-time updating. In the next section a short 
presentation of ANN methodology is given, 
focusing on some key problems and suggesting 
methods to that can be used to overcome them. 
 
ARTIFICIAL NEURAL NETWORKS 
Artificial neural networks are a type of parallel 
computer structure, within which a number of 
processing units are linked together so that the 
computer’s memory is distributed and 
information is passed in a parallel manner. A 
large number of ANN architectures and 
algorithms have been developed so far, multi-
layer feedforward networks (Rumelhart et al., 
1986), self-organising feature maps (Kohonen, 
1982), Hopfield networks (Hopfield, 1987), 
counterpropagation networks (Hecht-Nielsen, 
1987), radial basis function networks (Powell, 
1987) and recurrent ANNs (Elman network; 
Elman, 1988). Of these networks, the most 
commonly used are feedforward networks and 
radial basis function networks (Karunanithi, et 
al., 1994; Bishop, 1995). Multi-layer 
feedforward networks have been found to 
perform best when used in hydrological 
applications (Hsu et al., 1995; Dauson and 
Wilby, 1999) and as such they are by far the 
most commonly used (Maier and Dandy, 2000). 
The attempt to choose between different methods 
and define which is the superior, is likely to fail 
as in most cases the choice should be 
“application oriented”. It is preferable for every 
new application to test different types of ANNs 
rather than use a pre-selected one.  
 
Training 
To train an ANN, the following procedure is 
generally applied. Training data patterns are fed 
sequentially into the input layer, and this 
information is propagated through the network. 

The resulting output predictions yj(t) are 
compared with a corresponding desired or actual 
output, dj(t). The mean squared error at any time 
t, E(t), may be calculated over the entire data set 
using Equation 1. The intermediate weights are 
adjusted using an appropriate learning rule until 
E(t) has decayed sufficiently. 
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A wide range of training algorithms has been 
developed to achieve optimum model 
performance. For feedforward ANNs, the error 
backpropagation algorithm with the gradient 
descent update rule (Rumelhart et al., 1986) is 
most commonly employed. However, there are a 
number of inconvenient drawbacks associated 
with the use of this algorithm. For example, prior 
to ANN training it is necessary to specify the 
network architecture, that is, the number and 
configuration of its hidden units. 
The learning ability and performance of an ANN 
model depends on the suitability of its 
architecture. If the network is too small, it may 
have insufficient degrees of freedom to fully 
capture all the underlying relationships in the 
data. Conversely, if the network is too large, it 
may fail to generalise, memorising events in the 
training data that are not necessarily 
representative of the system under consideration. 
To overcome this type of dilemma a simplistic 
but effective method should be applied, as it is 
presented in the paragraph below that will give 
an unbiased solution (in this case the correct 
ANN architecture). 
 
Generalisability 
The main concern when referring to ANNs is 
whether the trained network will generalise when 
presented with new data and especially when 
these data are outside the range of the calibration 
data. When a network is trained repeatedly in 
order to improve its performance on the training 
data, there is the possibility that the network will 
finally “memorise” the training samples and not 
‘learn’ the underlining pattern. This is called 
overfitting. This is more likely to happen to 
networks with a large number of processing units 
and results in poor generalisability. The ability to 
generalise, that is to produce outputs from 
unknown inputs, is very important when the 
neural network is used in applications like real-
time flow forecasting.  
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Figure 1. Change in error with training time, on training set and test set (Mehrota et al., 1997) 
 
For this reason networks with, fewer parameters 
are preferred, just enough to provide an adequate 
fit in order to avoid over-training. 
One solution that is suggested, is to use an extra 
set of data (together with the training set and the 
validation set), a test set, and monitor the 
performance of the network on this data set. 
(Mehrota et al., 1997). The network parameters 
(weights and biases) should be adjusted only on 
the account of the training set, but the error 
should be monitored on the test set. The error on 
the test data will normally decrease during the 
initial iterations together with the error on the 
training set. However, when the network begins 
to overfit the data, the error on the test set will 
begin to rise, as presented in Figure 1. The 
training is then stopped, and the weights and 
biases producing the minimum error on the test 
set are returned. This is also called ‘early 
stopping’. 
This method can be generalised and introduced 
as well for the identification of the appropriate 
network architecture (number layers and number 
of neurons per layer). This technique is applied 
in the case study presented below. 
 
Another method for improving generalisation, 
which involves modifying the performance 
function, is called regularisation. It is possible to 
improve generalisation by adding a term in the 
performance function ( MSE ) that consists of the 
mean of the sum of squares of the network 
weights and biases MSW : 

( )MSWMSEMSEimpr γγ −+= 1  (2) 

where imprMSE is the improved mean square 
error, γ  is the performance ratio,  
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where jw  is a weight or bias in the jth layer. 
This function will cause the network to develop 
smaller weights and biases and will force the 
network response to be smoother and less likely 
to overfit. 
There are certain applications in which it is better 
to converge more slowly, when for example 
early stopping is used. Inconsistent results are 
likely to be obtained if an algorithm that 
converges too quickly is applied.    
 
River flow prediction 
River flow data from two gauging stations, Pili 
and Ali Efenti, located within the catchment of 
Ali Efenti, subcatchment of the River Pinios in 
Greece are used. These are half-hourly data and 
they cover three separate periods: 30/11/90-
25/12/90 (26 days), 5/2/91-28/2/91 (23 days) and 
1/4/92-11/5/92 (42 days). The data were obtained 
from National Data Bank of Hydrological & 
Meteorological Information of Greece. The size 
of the catchment upstream of Ali Efenti is 2763 
km2 and the distance between the two gauging 
stations is 55 Km. The periods presented in 
Figure 2 were used for calibration, testing and 
verification, respectively. 
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Figure 2. Discharge data record at, Pili (solid line) and Ali Efenti (dotted line) 

 
The reason these periods were chosen was to 
produce more general models. First a medium 
flow period was used for training, then a low 
flow period was used for testing and finally a 
high flow period, with values over those in the 
previous data sets, was used to validate the 
ability of the produced ANN to generalise. The 
aim was to create models that could forecast the 
flow with a lead-time of 7 hours that can be used 
for operational applications. 
A correlation analysis was performed on the 
data, to identify suitable lags to be applied to the 
upstream gauging station (Pili) time series, in 
order to form the ANN’s input patterns. 
For the application of ANN, the data were scaled 
so that the training and verification record lay 
within the range of [-1 1]. The input is then 
introduced to the input layer of each of the ANN 
with a 14-hour lag. 
Three ANN models were developed, based upon 
the input data described above. All the ANNs 
incorporated linear activation functions at the 
output layer. 

The first type was a traditional feed-forward 
backpropagation ANN trained with the gradient 
descent method. The backpropagation ANN (BP-
ANN) had two hidden layers with 1 neuron in 
each layer. The option of using a BP ANN with 
linear transfer functions (positive linear) in the 
hidden layer, was also tested.  
The second type was an Adaptive Linear Neuron 
Network (ADALINE). This type of ANN has the 
advantage of using only linear transfer functions, 
which lead to a single error minimum, making 
parameter estimation easier. The ADALINE used 
had a single hidden layer combined with a tapped 
delay line with delays ranging from 14-25h. The 
network once initialised and operating adapts at 
each time step to minimise the error. In training 
mode, the network is set to pass 10 times through 
the input sequence. 
The third type was an Elman network. These 
networks are two-layer backpropagation 
networks, with an additional feedback 
connection (recurrent) from the output of the 
hidden layer to its input. This feedback 
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mechanism works as temporal memory helping 
Elman networks to learn, recognise and generate 
time varying patterns. The network used in this 
case study had one hidden layer with 15 neurons.  
The Error Prediction method was used as an 
updating technique, as it is simple, robust and 
can be used together with any type of model, as 
it is a totally separate procedure. With error 
prediction, the difference (error) between the 
observed flow and the model output is modelled 
using an ARMA model. In the verification mode, 
this ARMA model is used to forecast the error 
and is afterwards added to the flow forecast in 
order to correct it.   
 
RESULTS AND DISCUSSION 
The overall performance of each model obtained 
was judged with respect to the verification data 
on the basis of the coefficient of efficiency, R2, 
defined as follows: 
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where yp, and dp are the model predictions and 
target values for each pattern (sample) p 
respectively, and d is the mean target output. 
The results obtained using each of the ANN 
methods over the verification period are 
presented in Table 1. It can be seen that the 
simple BP network with linear activation 
function (poslin), provides the poorest 

predictions of all the models in calibration, but 
still manages to generalise better than the non-
linear BP (logsig). However, when the error 
prediction method is used in conjunction with the 
ANN models, the model performance assessed 
by the coefficient of efficiency, increases 
significantly from 0.455 to 0.895 and from 0.412 
to 0.889 respectively. 
In comparison with the Feed forward ANN 
models both the non-linear ELMAN and the 
adaptive ADALINE, provide considerably better 
flow forecasts.  As it is presented in Figure 3 the 
BP network, (that applies for both transfer 
functions), fails to generalise and predict the 
river flow above a certain level. 
The recurrent ANN model (ELMAN) provides 
reasonable forecasts, better than any other ANN 
(Table1). The recurrent term seems to improve 
the network’s performance. When the updating 
method is introduced, the performance of all the 
tested models is improved. Error prediction 
performs extremely well, correcting the model 
output significantly (Table 1). The updated 
model output over the verification period (APR-
MAY 1992) producing a flow forecast at Ali 
Efenti that is plotted in Figure 4. As can be seen 
from Figure 4 and Table 1, both the ADALINE 
and ELMAN models perform well, with the 
recurrent ANN model performing marginally 
better. This may be attributed to its greater non-
linearity and the information introduced to the 
ANN by the recurrent (feed-back) process. The 
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Figure 3. Flow forecast results at Ali Efenti with a lead-time of 7 hr 
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Table 1. Results obtained for 7-hour flow forecasts with different types of ANN 

Type Calibration Testing Verification Updated 
FF1,1,1 (logsig) 0.737 0.414 0.412 0.889 
FF1,1,1 (poslin) 0.709 0.531 0.455 0.895 
ADALINE 0.722 0.766 0.598 0.871 
ELMAN 0.723 0.674 0.622 0.927 

FF(logsig):Feed forward back bropagation NN with Log sigmoid transfer function 
FF(poslin):Feed forward back bropagation NN with positive linear transfer function 
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Figure 4. Updated flow forecast at Ali Efenti with a lead-time of 7h. 
 
updating technique is able to correct the timing 
of the rising limb and the recession to an extent 
that is defined by the performance of the 
simulation model. The instability (double peaks), 
shown in Figure 4 of the updated models, when 
compared to non-updated forecasts, can be 
attributed to the long lead time of the updating 
procedure (7hrs: 14 half hour steps). 
 
CONCLUSIONS 
A multilayer backpropagation network with 
enough processing units can reproduce just about 
any function. However backpropagation will not 
always find the correct weights and biases for the 
optimum solution. Building a network for an 
application requires experience and use of 
suitable methods, such as the simple early 
stopping techniques presented above As the 
initial values in optimisation algorithms are very 
important, it is advisable to re-initialise the 
network several times to guarantee that the best 
solution is obtained. 
The case study presented above shows that 
ANNs, as also suggested by other authors, can be 

used for flow forecasting. The main concern is 
whether the trained model will be able to 
generalise. As shown earlier, ANNs models that 
are trained using a simple method like early 
stopping, that forces them be simple and general 
(with few hidden layers and neurons), can predict 
the flow regime sufficiently. When coupled 
together with an updating technique, ANNs can 
form a reliable flow forecasting system, which 
can be used as a tool for water resource 
management. 
In real-time applications, like flow regulation 
and flood forecasting where the precision and 
modelling speed are crucial, black box models 
and signal processing techniques need to be 
implemented. As is presented by this case study, 
error prediction manages to correct the model 
output and produce an excellent forecast. Even if 
error prediction has no physical interpretation, it 
would be wrong not to use it in real-life 
applications where issues like human safety and 
economic disaster are concerned. 
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