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ABSTRACT 
Furrow irrigation is used for row crops. S.C.S., based on a great number of field experiments, 
under different circumstances and soil families, has developed design equations for furrow 
irrigation. These equations have been used for steady flow rate or for flow rate with one 
reduction when the water reaches the end of the furrow. They can also be used for a small 
period of time (time step) when the flow rate can assumed to be steady. 
Many scientists, who dealt with furrow irrigation, try to improve the application efficiency by 
investigation the importance of the parameters that influence the furrow irrigation. Slope, 
furrow length, intake family have extensively been studied. Flow rate has been studied as 
steady or with a cutback of flow when water has advanced to furrow end. This article studies 
the influence of altering flow rate at furrow irrigation to application efficiency. 
The steepest descent method is implemented for the optimisation at each time step flow rate. 
Steepest descent method evaluates the derivative of the function, which has to be optimized 
(application efficiency), to the parameter that is changing (flow rate). The derivative of the 
application efficiency to flow rate is calculated analytically. The optimized application 
efficiency is achieved when the derivative is zero, thus the value of flow rate is raised if the 
derivative is positive or is decreased if the derivative is negative. 
When the flow rate at each time step is optimised, the process begins again because the 
optimisation for the flow rate of the initial steps didn’t take into account the optimized flow 
rates of the later time steps. This process converges and estimates the optimised flow rate at 
each time step. 
The results of the optimisation for two samples are alike. The maximum application efficiency 
is achieved by increasing the flow rate at the beginning of irrigation and before the water 
reaches furrow end the flow rate must be decreased to the minimum value of flow rate that 
fulfils instant infiltration. 

KEYWORDS: Design equations of S.C.S., optimisation, altering flow rate. 
 
 
1. INTRODUCTION  
Furrow irrigation is a method of plant irrigation that is widely used because of its low cost in 
equipment and energy. Furrow irrigation has low application efficiency, while newer irrigation 
systems have much higher application efficiency. 
Several parameters are evaluated at furrow irrigation design and our aim is to choose the 
value of the changeable parameters so that the maximum application efficiency of irrigation 
will be achieved. S.C.S. developed equations for the calculation of the advance time, the 
design time, the wetted perimeter, the application efficiency when values of flow rate, length, 
slope, Manning roughness coefficient and intake family of furrow are known. 
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Most of the scientists (Hart et al., 1983; Papazafeirou, 1984; Panoras et al., 1996, Panoras, 
1988, Papamichail and Papadimos, 1995, 1996) who have dealt with furrow irrigation, have 
assumed that the changeable parameters are the flow rate and the length of the furrow. The 
influence of the length has been studied extensively from a number of scientists. It is known 
that optimization of uniformity and minimization of surface runoff, which leads to greater 
application efficiency, can be achieved by using an altered flow rate. The only case of altering 
flow rate, which has been studied, is irrigation with one cutback of flow, when water has 
advanced to furrow end. 
In this article the application efficiency is optimized by using altering flow rate. 
 
2. S.C.S. DESIGN EQUATIONS FOR FURROW IRRIGATION 
S.C.S. has developed equations for furrow irrigation design by classifying soil to intake 
families, has set constants unique for each intake family given in tables or equations (Hart et 
al, 1983, Papamichail and Papadimos, 1995, Papamichail and Papadimos, 1996). 
The cumulative infiltration is expressed as the equivalent intake depth over the furrow spacing 
and unit length: ΄ 
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where Fn is equivalent intake depth in mm, T is time in min, a, b, and c are intake family 
coefficients, w is the furrow spacing, P wetted perimeter per unit length, given by the empirical 
relationship  
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where Q is the flow rate (l s-1), S is the slope or hydraulic gradient (m m-1), and n is the 
Manning roughness coefficient. 
The time for water to advance to a specific point along the furrow depends on the distance, 
flow rate and slope: 
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where Tt is the advance time (min), x is the distance (m) from upper end of the furrow to point 
x (maximum value of x is L, the field length), f and g are advance coefficients given in tables 
or equations. 
The opportunity time required for intake of the selected net application depth, Fn, can be 
estimated from the solution of equation 1 in the form  
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Small dimensions of furrows and erosion demand irrigation with low flow rate. Thus, the 
remained water infiltrates very fast and the recession time is assumed zero, for gradient and 
open furrows. 
Irrigation stops when net application depth is infiltrated at the end of the furrow. With the 
above assumption, the irrigation time T is the sum of the advance time to the end of the 
furrow and the opportunity time:  
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where Ta, Tt, Tn, are in min, L is the length of the furrow in m. 
The gross water application (Fg) is: 
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where Fg is in mm. 
The application efficiency Ef, expressed in percent is: 
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The above procedure is referred when the flow rate is constant during the irrigation. The flow 
rate may be reduced improving the application efficiency. Many designers are reducing the 
initial flow rate to the half at the time the initial flow has advanced to the end of the open end 
furrow. Advance time is computed for the equation (3), using the initial flow rate Q and X=L, 
where L is the length of the furrow. The opportunity time for intake of the desired net 
application Fn is calculated from equation (4) where the adjusted wetted perimeter is 
determined for the reduced flow rate Q/2. The total time for irrigation is the sum of Tt and Ta. 
The new gross application is:  

 y t n
60 Qf QT T
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 (8)  

 
3. APPLICATION OF THE ALTERING FLOW RATE AT THE S.C.S. EQUATIONS 
Assuming that for a small period of time (time step) flow rate is steady, S.C.S. equations can 
be used for that period of time. The estimation of the advance and opportunity time is alike 
when the altering flow rate is used. The distance that the water will advance or the quantity of 
water that will infiltrate, is calculated at each time step. Both equations that describe 
infiltration and the advance of the water are nonlinear to the time. Each time step does not 
cause the same alteration to the distance and the cumulative infiltration. Thus, the alteration 
to the distance and cumulative infiltration has to be calculated at each time step. That 
alteration is caused by the alteration to time equal to the time step (Dt), for a specific flow rate. 
Regarding the calculation of the advance time, firstly, the distance that the water has 
advanced with a constant flow rate is calculated for a specific time (Dt, 2Dt, …..). Equation (3) 
is used for that calculation, which needs a numerical method to be solved for the distance e.g. 
the midpoint method was used. Next, the advance time for that distance with the flow rate of 
the new time step is calculated and the process begins again. The process ends when the 
calculated distance is bigger than the length of the furrow. The advance time is computed 
from the number of time steps that had been done until the water reaches the end of the 
furrow. One calculation phase of this process is plotted in Figure 1. For time T1, the 
corresponding flow rate is Q1 and the distance X is calculated. Next, a new advance curve is 
calculated because flow rate changes. Time T2 is the time required for the water to advance 
the same distance with Q2 flow rate. The time step Dt is added to T2 and a new calculation 
phase starts. 
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Figure 1. Distance to time for different flow rates 

 
The same process is implemented for the calculation of the opportunity time. At the 
beginning, for a specific time (Dt, 2Dt,.....), the wetted perimeter is calculated taking into 
account the flow rate of that specific time and then the cumulative infiltration is calculated 
from equation (1). The opportunity time is calculated from equation (4), for the same quantity 
of water to infiltrate, but with the wetted perimeter that has the flow rate of the new time step. 



OPTIMIZATION OF THE FURROW IRRIGATION EFFICIENCY 

 

569

The time step is added to that time and the process begins again. The process ends when the 
cumulative infiltration becomes bigger than the net application depth. The opportunity time is 
computed from the number of time steps required for the net opportunity depth to infiltrate at 
the bottom edge of the furrow. One calculation step of this process is plotted in Figure 2. For 
time T1, the flow rate is Q1 and the cumulative infiltration I is calculated. Then flow rate 
change, therefore a new curve of cumulative infiltration is formed. The calculated time T2 is 
the time required for the same amount of water to infiltrate, if flow rate is Q2. The time step Dt 
is added to T2 and a new calculation step starts (Ampas 1998, Ampas and Baltas, 2007). 
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Figure 2. Cumulative infiltration to time for different flow rates 

 
The gross application depth is calculated as the integral of the flow rate to the time, with the 
relationship:  

 g i
60d Q * Dt
WL

= ∑  (9)  

where Qi is the flow rate at the i time step, Dt is the time step in min. 
 
4. MAXIMISATION OF THE APPLICATION EFFICIENCY  
The maximisation of the application efficiency to the flow rate is a non linear, constrained 
optimisation problem. The parameters for the optimisation are as many as the time steps that 
the irrigation takes place. We have the equation Ef(Q1, Q2,...) and our aim is the calculation of 
the maximum Ef(Q1, Q2,...). 
Constrains for the optimisation are the maximum and the minimum value of flow rate. The 
minimum value of the flow rate must fulfil the instant infiltration for all the length of the furrow. 
The calculation of the minimum value of the flow rate is based on the instant infiltration. 
However, instant infiltration does not have the same value for all the length of the furrow, 
because opportunity time differs at each point and depends on the advance time. Thus, the 
length has to be divided into N equal parts with Dx length, to each one of which the infiltration 
is calculated and then the minimum flow rate is calculated from the relationship:  

 
N

i
min

i 1

I * P * Dx
Q

60=
= ∑  (10)  

where Qmin is the minimum flow rate in l s-1, Ι is the instant infiltration to the i part of the furrow 
in mm min-1 P is the wetted perimeter in m. The value of the minimum flow rate can be 
computed with iterations because wetted perimeter is a function of the flow rate. 
The maximum value of the flow rate without causing erosion can be computed with the 
empirical relationship (Hart et al., 1983):   
 Qmax = 0.63/S (11)  
where Qmax is the maximum value of the flow rate in lt s-1 and S is the furrow slope m m-1. 
With the solution of the optimization problem the constant values at each one time step are 
determined i.e. Q1, Q2,..., for the maximum application efficiency of the irrigation. 
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To maximise the application efficiency, with an optimisation method, the flow rate that 
maximises the application efficiency when all the other values of the flow rate are constants, 
is calculated at each time step. First we evaluate the optimum values of the first time steps 
flow rate then the optimum values of the second time steps flow rate and the process stops 
when the irrigation is over. At this process the initial time steps flow rates do not use the 
optimum values of the flow rate of the afterwards time steps. Thus new calculation must be 
done to compute the optimum values for each time step. The new values of flow rate 
converge to the optimum values of the flow rate. This process avoids large matrixes. 
The estimation of the optimum flow rate at each time step is a non linear optimization problem 
and needs an iterative – converged method, like the steepest descent method (Press et al, 
1992, Georgiou and Vasiliou, 1993, Ampas, 1996). According to the method, the slope of the 
curve of application efficiency versus the flow rate Qi  is determined at the point of estimation 
of the flow rate QiK (K estimation of the flow rate at the i time step). The slope, which 
mathematically is expressed from the derivative, is computed numerically. To the direction 
that the application efficiency is maximized, the flow rate QiK is changed. We change the flow 
rate so that the new application efficiency is bigger than the previous one. With the new 
estimation of the flow rate Qi

K+1 , we compute the slope, e.t.c., until the value of the flow rate 
maximizes the application efficiency. The amount of change to the value of the flow rate Qi

K is 
very important for the success of the method. If the change is bigger than it should be, then 
the application efficiency might be lower and if the change is smaller than it should be, it will 
result in a large number of iteration.  

 
 

Figure 3. Flow chart for the optimization  
 

The algorithm of the method is given below: 
1. Iinitial estimations of the flow rates are made for all time steps (Q1, Q2,... Qi). 
2. For the flow rate at i time step, the derivative of the application efficiency to the flow rate 

Qi. is computed numerically. 
3. To the direction that Ef is maximized by using new flow rate for i time step Qnewi, the 

new application efficiency Enewf is calculated. 

4. If Ef≅Enewf and Qi≅Qnewi 

Initial estimations of the flow rates for all time steps (Q1, Q2,... Qi)  

Numerically computation of the application efficiency derivative  
to the flow rate Qi  for i time step.  

To the direction that Ef is maximized by using new flow rate  
for i time step Qnewi, Enewf is calculated.  

If Ef≅Enewf and Qi≅Qnewi 

If irrigation is not finished,  
for flow rate of the next time step i+1

If irrigation is over, compare flow rates 
of all time steps with the ones of the 

previous calculations. 

If Ef > Enewf  
modify Qnewi and compute Enewf

If Ef < Enewf 
Qi = Qnewi 

If they are equal, the 
optimisation is over. If they differ, i=1 



OPTIMIZATION OF THE FURROW IRRIGATION EFFICIENCY 

 

571

a) If irrigation is not finished, for flow rate of the next time step i+1, we go to 2. 
b) If irrigation is over, the flow rates of all time steps are compared with the ones of the 

previous calculations. If they differ for i=1, we go to step 2, if they are approximately 
equal, then the optimisation is over. 

5. If Ef > Enewf, according to 3, we modify Qnewi and compute a new application efficiency 
Enewf we go to 4. 

6. If Ef < Enewf, we have Qi = Qnewi and go to 2. 
This optimization method, as it is applied for the estimation of one optimum flow rate Qi is the 
one – dimension expression of the steepest descent method. The application of the full form 
of the steepest descent method for the estimation at the same time, the optimum flow rates at 
all time steps demands large matrixes, which are avoided with the modification of the method 
as it is implemented here. 
 
5. SAMPLES 
Two applications from the literature were selected for the evaluation of the flow rate that 
maximizes the application efficiency. The first one is from Hart et al. (1983) and the second 
one is from Papazafeiriou (1984). The results are shown in tables and charts. 
 
5.1. First Sample 
 
Intake family of the soil If = 0,3 Roughness coefficient n = 0.04 
Net depth of application dn = 75 mm Furrow spacing w = 0.75 m 
Furrow length L = 275 m Slope S = 0.004 m m-1 

Table 1. Results for the three different irrigations 

 P 
(m) 

Tt 
(min) 

Tn 
(min) 

Ta 
(min) 

dt 
(mm) 

Ef 
(%) 

Constant flow rate  0.40 143.6 999 1143 200 37.5 
One reduction of flow rate  0.36 143.6 1165 1309 127 59 
Altering flow rate  - 100.3 1270.5 1370.8 99.8 75.1 

At Table 1, in the first row, we have the results when we irrigate with stable flow rate, in the 
second row we have the results when we reduce the flow rate to half when the water reaches 
the bottom end of the furrow, in the third we use altering flow rate. 
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Figure 4. Flow rate of irrigation to time for sample 1 

The results when we use altering flow rate are given from a computer program, which 
was designed for this aim, using the S.C.S. equations as presented above for altering 
flow rate. The time step was 10 min, the space step for the minimum flow rate estimation 
was 1m. The program was as a subroutine to a program for the optimization using the 
steepest descent method. 
There are 138 time steps. Flow rate versus time is shown in Figure 4, as well as the plots 
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for the two other irrigations and the minimum flow rate. 
5 circles of calculations were made for the optimization. The optimum flow rate at each 
time step was calculated by 7 iterations at the initial circles and only 1 or 2 iterations were 
necessary at the latest circles as the procedure converged. 
Using smaller time step (Dt = 5 min), the curve of the flow rate versus time didn’t change 
and there was a small increase of the application efficiency at 0.05 %. 
 
5.2. Second Sample 
Intake family of the soil If = 0,5 Roughness coefficient n = 0.04 m 
Net depth of application dn = 80 mm Furrow spacing w = 1.00 m 
Furrow length L = 300 m Slope S = 0.005 m m-1 

Table 2. Results for the three different irrigations 

 P 
(m) 

Tt 
(min) 

Tn 
(min) 

Ta 
(min) 

dt 
(mm) 

Ef 
(%) 

Constant flow rate  0.435 111.3 796.3 907.6 181.5 44.1 
One reduction of flow rate  0.382 111.3 953.5 1064.8 117.6 68.0 
Altering flow rate  - 110 998.1 1108.1 101.5 78.8 

Table 2 is similar to Table 1 for the second sample. Also, Figure 5 is similar to Figure 2. 9 
circles of calculations were made for this optimization .The number of each time step optimum 
flow rate is almost the same as the previous sample. 
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Figure 5. Flow rate of irrigation to time for sample 2 

 
6. DISCUSSION 
The results were alike for both samples. The procedure of altering the flow rate resulted in 
application efficiency much higher than that of the constant flow rate. The increase of the 
application efficiency was up to 90 % of the efficiency with constant flow rate, and it is quite 
higher if the flow rate is reduced at half when the water reaches the bottom end of the furrow. 
The curve of the flow rate versus time is alike at both samples. At the beginning, a relatively 
low flow rate is applied, which is increased until it takes its maximum value. When the water 
reaches the bottom end, the flow rate is decreased until it takes its minimum value. The 
minimum value of the flow rate fulfils the instant infiltration (basic infiltration) for all the length 
of the furrow, is one of the constraints of the optimization. 
There are two reasons for the increase of the application efficiency. The first one is the 
decrease of surface runoff and the second is the increase of application uniformity. 
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Surface runoff is decreased because the applied flow rate is calculated just to fulfil the instant 
infiltration by applying the minimum flow rate (Qmin).  
The application uniformity with altering flow rate is higher due to the way that flow rate 
changes with time. Small value of the flow rate at the beginning of the irrigation cause small 
value of wetted perimeter, therefore small value of the cumulative infiltration. The increase of 
the infiltration after some time causes big wetted perimeter. At the top of the furrow, the 
cumulative infiltration is relatively big, so the value of the instant infiltration has decreased, 
therefore the quantity of the water that will infiltrate is small. At the middle and at the end of 
the furrow, the big wetted perimeter and the big instant infiltration cause a big quantity of the 
water to infiltrate. Thus, the distribution of water is more uniform and the application efficiency 
increases. 
Comparing the two samples that have different irrigation factors we can say: 

• Slope is an important factor of the application efficiency as it restricts high values of flow 
rate and simultaneous higher values of slope makes the water to advance at furrow’s 
bottom end faster and therefore it achieves higher uniformity.  

• Intake family is a very important factor for the application efficiency as it determines the 
instant infiltration. As mentioned above knowledge of instant infiltration reduces surface 
runoff, but also instant infiltration influences application uniformity because high values 
of infiltration cause long advance time and the water reaches furrow’s bottom end later, 
therefore application uniformity and application efficiency are decreased.  

Irrigation with one reduction of flow rate when water reaches furrow’s bottom end is not right 
because it does not fulfil the instant infiltration for all the length of the furrow. As it can be 
seen in both figures 4 and 5 the curve of irrigation with reduction of flow rate is below the 
curve of the minimum flow rate (Qmin). 
 
7. CONCLUSIONS 
The aim of this paper is to maximize the application efficiency of furrow irrigation. For the 
design of the furrow irrigation, the equations of S.C.S. were properly modified, so that they 
can be used for flow rate constant for a small period of time. Several methods were tested for 
the optimization. The most effective was the steepest descent method for the computation of 
the optimum value of the flow rate at each time step. 
The flow rate of furrow irrigation must start from a small value which is increasing until it 
reaches the maximum allowed value. Flow rate then is decreased just to fulfil the instant 
infiltration. Further research must be done that will examine the altering of the flow rate for 
different soil types and different slopes of the cropped field. 
Agriculture is using the biggest amounts of water, thus higher application efficiency can save 
very big amounts of fresh water. This economy can be achieved with the practice of the 
theory. It is a quite common practice for the farmers, to reduce the flow rate at the furrow 
when water reaches the furrow end by moving higher the pipes. It is very easy to irrigate the 
next furrow instead of reducing the flow rate. Thus the next furrow will start its irrigation with a 
small flow rate which can be increased later when the previous furrow will stop its irrigation. 
Of course, small time steps for the altering of flow rate are impossible without an automatic 
control. Practically is not difficult to alter 3 or 4 times the flow rate of irrigation, this will 
increase the application efficiency. 
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