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ABSTRACT  
Drainage management problems are usually very hard to simulate due to the uncertainty of 
the hydraulic parameters involved. Fuzzy analysis is one of the available tools that can be 
used for such problems, involving uncertain data. A fuzzy analysis approach usually involves 
the consideration of several α-level cuts and an analytical approach or an explicit scheme 
approach for the PDE's discretization. Several application examples of this approach are 
listed in the literature, including uncertainty in hydraulic conductivity, specific yield, 
transmissivities, porosities, dispersivities, and deoxygenation rate coefficient. 
A methodology for the simulation of drainage problem having vague values of hydraulic 
parameters is introduced in this paper, and an analytical solution for a two-dimensional 
drainage application is presented. The two-dimensional problem of drainage is handled using 
fuzzy analysis by defining the hydraulic conductivity K as a triangular fuzzy number (TFN).  
The method of interval analysis is used in all the α-level cut examples. A solution is obtained 
using eleven α-level cuts and also solutions for two, three, and five α-level cuts are presented. 
Trials for different values of effective porosity are also performed. Finally conclusions on the 
necessary number of α-cuts utilized for drainage problems are drawn. 

KEYWORDS: Drainage management, fuzzy numbers, fuzzy arithmetic, uncertainty, hydraulic 
conductivity, effective porosity. 
  
 
1.  INTRODUCTION 
Fuzziness, as handled in fuzzy logic, can refer to various types of vagueness and uncertainty 
but particularly to the vagueness related to human linguistics and thinking, differing from the 
uncertainty of the Probabilistic Theory (Tanaka, 1991). 
It is well known from the scientific society that simulation of natural phenomena involves 
parameters which cannot be measured accurately and their approximate value is used. This 
vagueness of the parameters affects all the mathematical models that are used. Example of 
vague parameters in ground water systems is the parameters of aquifer or the dispersion 
coefficient or the saturated water content. 
This vagueness of the parameters has a great influence on the arithmetic results and should 
be taken into account during calculations. Fuzzy logic theory which was developed by Zadeh 
(1965) is one way of dealing with this uncertainty. 
This theory although was accepted with a lot of cautiousness from the scientific society it was 
rapidly evolved from Sugeno (1972) who applied it in uncertainty measurements and  
uncertainty intervals and Mamdani from University of London (Mamdani, 1974) and his 
associates who used fuzzy logic in control systems and more specifically to control the 
temperature in a rotary cement kiln. Fuzzy logic models today, have widespread applications 
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in decision making, in control theory, in predicting and optimizing, since they can transform 
vague linguistic information into arithmetic form. Fuzzy models do not replace traditional 
models by any means, instead they provide a quick and simple method of calculation, in 
cases where exact data is unreliable and calculations are complicated. Finally fuzzy logic 
approaches with a more scientific and logical way the description of the properties of an item. 
In hydraulic engineering Dou et al. (1995) examined an aquifer under pressure and steady 
state condition with vague hydraulic parameters and they solved the resulting arithmetic 
scheme with intervals. Chang et al. (1996) presented a theoretical method of programming 
with many objective functions where messages were fuzzy. Dou et al. (1997a) presented a 
transient model of an aquifer under pressure with vague parameters and compared the 
results of the arithmetic model with the analytical solution of Theis. Dou et al. (1997b) 
presented a fuzzy logic model in dispersion problems. Teegavarapu and Simonovich (1999) 
performed modelling of the uncertainty in the reservoir loss functions using fuzzy sets. 
Mujumdar and Sasikumar (2002) presented a fuzzy optimization model for the seasonal water 
quality management of river systems. The model addresses the uncertainty in a water quality 
system in a fuzzy probability framework. The occurrence of low water quality is treated as a 
fuzzy event. Randomness associated with the water quality indicator is linked to this fuzzy 
event using the concept of probability of a fuzzy event. Faye et al. (2003) presented a fuzzy 
logic model for long-term storage/transfer/distribution of water management system.  
One other class of problems involves systems of fuzzy rules which have applications in: 
reservoir management where Shrestha et al. (1996) worked on a multipurpose reservoir 
system, hydrology problems where Piechota and Dracup (1996) used 94 years of monthly 
Palmer Drought Severity Index (PDSI) data and their article investigates the hydroclimatic 
response in the United States to the extreme phases of the Southern Oscillation (El Niño and 
La Nina). Dou et al. (1999) developed a fuzzy rule-based model for solute transport in the 
unsaturated zone. Their change from using fuzzy numbers to represent imprecise variables in 
traditional finite difference solutions to models entirely based on fuzzy rules has mirrored the 
similar development of surface flow models. 
Ganoulis (1994) presented risk analysis in environmental problems. Mpimpas et al. (1998) 
presented the one dimensional solution of polluting element dispersion in a river. The fuzzy 
variables utilized, were the dispersion coefficient and the two decomposition coefficients. 
Mpimpas (1998) worked on arithmetic investigation of polluting elements dispersion using 
fuzzy logic, Ganoulis (2000) solved an aquifer recharge problem with infiltration where the 
diffusion coefficient was not precisely known. Chalkidis (2005) and Chalkidis et al. (2006) 
worked on aquifer management problems using fuzzy logic and fuzzy linear programming. 
Mpallas (2007) worked on management and hydrological problems using fuzzy rules, and 
Tzimopoulos et al. (2004) worked on two dimensional unsteady flow using fuzzy logic. 
Tzimopoulos et al. (2005) presented a quasi similar and shortened version of this paper, 
using fuzzy logic.  
In this article the case of a drainage management problem in unconfined aquifer is presented 
in which the hydraulic parameters experience uncertainty. Emphasis is given on water level 
during drainage for different confidence intervals α and the membership functions are 
presented for different drainage times. Finally the real values are presented after 
defuziffication. 
 
2. PRELIMINARIES 
Definition 1. Fuzzy set. 
If X is a collection of objects denoted generically by x, then a fuzzy set A in X is a set of 
ordered pairs: ( )( ){ }AA x, x x X= µ ∈ . Where ( )A xµ  is the membership function or grade of 

membership of x in A  that maps X to the membership space.  
The support (domain) of a fuzzy set A  is the crisp set of elements x such that ( )A xµ >0. The 
range of the membership function is a subset of the nonnegative real numbers whose 
supremum is finite. 
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Definition 2. Convex fuzzy set. 
A fuzzy set is considered convex when its objective function increases and then decreases 
monotonically and there is no local minimum. A fuzzy set is convex if: 

( )( ) ( ) ( ){ }A 1 2 A 1 A 2 1 2x 1 x min x , x , x , x X, 0, 1µ λ + − λ ≥ µ µ ∀ ∈ λ ∈ ⎡ ⎤⎣ ⎦  

Definition 3. α-level cut. 
The set of elements belonging to the fuzzy set A  at least to the degree α is called the α-level 
cut .  

( ){ }AA x x , [0,1]α = µ ≥ α α ∈ .  If ( ){ }AA x xα′ = µ > α , then it is called “strong α-level cut”. 

Definition 4. Fuzzy numbers. 
A fuzzy number M is a convex normalized set M of the real line R such that: 

1. It exists at least one Rx ∈0 with ( )M 0x 1µ =   

2. ( )M x 1µ =  is piecewise continuous. 

When fuzzy set theory is used to solve real problems of realistic size, it is more efficient to 
use a special type of fuzzy numbers, the LR-type (Zimmermann, 1996). 
Definition 5. LR-type. 
A fuzzy number M is of LR-type if there exist reference functions L (for left), R (for right), and 
scalars α>0, β>0 with  

( )M

m xL For x m
x

x m For x mR

⎧ −⎛ ⎞
≤⎪ ⎜ ⎟α⎝ ⎠⎪µ = ⎨

⎛ ⎞−⎪ ≥⎜ ⎟⎪ β⎝ ⎠⎩

 

m, is a real number called the mean value of M, and α and β are called the left and right 
spreads respectively. A triangular fuzzy number (TFN) is a special case of semisymmetric LR 
fuzzy number (Kaufmann and Gupta, 1991; Zimmermann, 1996). To specify a TFN we use 
the three values (α1, α2, α3) of the triangle base, where α1≤ α2 ≤ α3 . 
Interval Analysis 
Strictly speaking, these special cases of fuzzy numbers are fuzzy intervals. So every α-level 
cut, actually, gives an interval number. Disposing various α-level cuts we can construct a 
fuzzy number in discrete form. Finally, if we want to use fuzzy sets in applications, we will 
have to deal with interval number operations (Moore, 1966; Dou et.al., 1995; Zimmermann, 
1996). 
If  * is one of the symbols +, -, ·, /, we define arithmetic basic operations on interval number by 

{ }a,b c,d x y a x b, c y d∗ = ∗ ≤ ≤ ≤ ≤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  except that we do not define [a, b]/[c, d] if 0 ∈  [c, d]. 
Specifically, 
[a, b]+[c, d] = [a + c, b + d] 
[a, b]-[c, d] = [a - d, b - c] 
[a, b] · [c, d] = [min (ac, ad, bc, db), max (ac, ad, bc, db)] 
[a, b]/[c, d] = [a, b] ⋅ [1/d, 1/c] if 0 ∉  [c, d]. 
 
3. PROBLEM FORMULATION    
In this article, a two-dimensional analytical solution for obtaining the groundwater level is 
presented. Examples of real applications are: Drainage of an area by drainpipes or natural 
ground configurations or drainage systems with subsequent well points, which are applied in 
soil operations in dry conditions, on grounds with a rich groundwater supply. 
The analytical solution of the two-dimensional problem is derived from the two-dimensional 
linearized Boussinesq equation. 
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where S/HKα = , t denotes time, x, y Cartesian coordinates, H  water table elevation, K the 
hydraulic conductivity, H the average value of the water table elevation and S is the effective 
porosity of the soil. The initial and boundary conditions are (Figures 1 and 2): 

ayy

axx
H)t,R,y(H,Ry
H)t,y,R(H,Rx
H),y,x(H,t

=±±=

=±±=
== 100

. 

For one-dimensional problem the analytical solution is as follows: (Tzimopoulos, 1983; 
Chalkidis, 2005). 

))n(k(

e
R

x)n(cos
)n(

)(e)
R

xkcos()(
kHH

H)t,x(H

n

R

atk

xn

n
R

atk

x
n

n

n

na

a x
n

x
n

2
12

12
12

14212 2
2

2
2

1

1

1

1

1

π

π
π

−=

−
−

−
=−=

−
−

−∞

=

+−∞

=

+ ∑∑                     (2) 

where t denotes time, x denotes distance from the drainpipe and Rx is the half of the drain 
spacing. 
Utilizing the above solution and extending it, for the two-dimensional drainage problem the 
following solution is obtained. (Tzimopoulos, 2004; Chalkidis, 2005). 
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4.  PROBLEM SOLUTION 
Solution (3) is applied to a subsurface drainage problem for a homogeneous and isotropic 
soil. A rectangular area with a pipe drainage system is assumed (Figure 1). The drainpipes 
are located at the four sides of the rectangular and a Cartesian axes system is referenced to 
the centre of the rectangular area. 
The initial condition is the saturated status of the area and at time t=0 the ground water starts 
to drain to the surrounding drainpipes. The phenomenon is symmetric; therefore the 
theoretical solution can be applied just to the quarter of the study area. 
Initial conditions:      t=0d, Η(x,y,0)=Η1=3m 
Boundary conditions: x=Rx=100m, H(100,y,t)=Ha=1m, y=Ry=100m, H(x,100,t)=Ha=1m 
In the specific drainage management problem the exact value for hydraulic conductivity is not 
known. A range of values is assigned based on previous experience for agricultural land and 
a solution is established for the specific drainage problem, based on the fact that hydraulic 
conductivity is a fuzzy number.   
When calculations include at least a fuzzy number, then the solution becomes a fuzzy number 
also (Dou et al., 1995). Consequently, for every time step and every spatial step, the water 
depth, which is a fuzzy number, is found. 
Assuming that in the area under consideration a series of measurements of hydraulic 
conductivity was carried out, giving as minimum value of conductivity 6 m d-1 corresponding to 
a Silt loam soil, a dominant value of 15 m d-1, corresponding to a Sandy Loam soil and a 
maximum value of 22 m d-1, corresponding to a Loamy Sand soil (Dieleman and Trafford, 
1976), the corresponding representation of hydraulic conductivity as a fuzzy number is shown 
on Figure 3. 



  HALKIDIS et al. 560 

Drainpipe

DrainpipeDrainpipe

Drainpipe

 
Figure 1. Area with a pipe drainage system Solution (3) gives the temporal and spatial value 

of the water table height in every position given by the combination of the position x, y in 
every time t 
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Water table H(x,y,t)
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Ry H(Rx,y,t)=Ha
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Figure 2. Drainage system 

 
Figure 3. Fuzzy number of hydraulic conductivity 

 
In order to introduce the fuzzy number in the equation, the method of interval analysis is 
utilized (Moore, 1966) and different results are compared for 2,(µΑ = 0, 1), 3, (µΑ = 0, 0.5, 1), 
5, (µΑ = 0, 0.25, 0.5, 0.75, 1), and 11, ( µΑ = 0, 0.1, 0.2, 0.3……. 1) α-level cuts in order to 
examine the sensitivity of the result on the number of α-level cuts. 
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The same procedure is also repeated for different values of the effective porosity in order to 
examine the variations of the results as a function of the effective porosity. 
Every solution was carried out for three values of the effective porosity S1=0.001, S2=0.01 and 
S3 =0.1 at the point x=y=0 and for different drainage times. 
For the defuzzification we used the method of fuzzy mean, or centre of gravity (COG), the 
value x of centre of gravity being the crisp value of water table. Thus the comparison of the 
results ends up being the comparison of the x values of the centers of gravity.  
The centre of gravity of the complex forms is calculated by first calculating the centre of 
gravity of each of the trapeziums and of the triangle which are generated from the α-cuts. 
Finally the resultant coordinates are calculated. The results concerning the variation of the 
water level during drainage are shown on Table 1 and solutions with membership function 
µ(x)=1 are also given.  
 

Table 1. Defuzzified values for 11, 5, 3 and 2 α-level cuts and effective porosity of  
S= 0.001, 0.01 και 0.1 at x=y=0 at different drainage times 

 
S1=0.001 S2=0.01 

t (d) G 11 G 5 G 3 G 2 G 11 G 5 G 3 G 2 

0 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 
0,1 1.04 1.05 1.06 1.10 2.68 2.68 2.68 2.66 
0,2 1.00 1.00 1.00 1.01 2.08 2.08 2.09 2.12 
0,3 1.00 1.00 1.00 1.00 1.68 1.69 1.71 1.77 
1 1.00 1.00 1.00 1.00 1.04 1.05 1.06 1.10 
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01 
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 S3=0.1 µ(x)=1 
 

G 11 G 5 G 3 G 2 S1=0.001 S2=0.01 S3=0.1 
0 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

0,1 3.00 3.00 3.00 3.00 1.01 2.68 3.00 
0,2 2.99 2.99 2.99 2.99 1.00 1.98 2.99 
0,3 2.99 2.99 2.99 2.99 1.00 1.54 2.99 
1 2.68 2.68 2.68 2.66 1.00 1.01 2.68 
2 2.08 2.08 2.09 2.12 1.00 1.00 1.98 
3 1.67 1.68 1.70 1.77 1.00 1.00 1.54 
5 1.28 1.29 1.32 1.39 1.00 1.00 1.16 

10 1.04 1.05 1.06 1.10 1.00 1.00 1.01 
20 1.00 1.00 1.00 1.01 1.00 1.00 1.00 

 
Figure 4 shows fuzzy values using the solution (3) with 2, (µΑ = 0, µΑ = 1), 5 (µΑ = 0, µΑ = 0.25 
µΑ = 0.5, µΑ = 0.75, µΑ = 0.1) and 11( µΑ = 0, µΑ = 0.1, µΑ = 0.2, µΑ = 0.3…..µΑ = 1) α-cuts at 
point (0,0) for time t=1d and for S2=0.01. Figure 5 shows fuzzy values with 2, 3 (µΑ = 0, µΑ = 
0.5, µΑ = 1) and 11 α-cuts at point (0,0) for time t=1d and for S2=0.01. 
At the Figures 4 and 5 “G025” is the gravity centre of the trapezium between the intervals at 
α-cut 0 and α-cut 0.25. Respectively “G050” is the gravity centre of the trapezium between the 
intervals at α-cut 0.25 and α-cut 0.50, “G075” is the gravity centre of the trapezium between 
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the intervals at α-cut 0.50 and α-cut 0.75 and “G1” is the gravity centre of the triangle between 
the intervals at α-cut 0.75 and α-cut 1. Also at the Figures 4 and 5  “G 2 α-cut” is the gravity 
centre of the TFN, “G 3 α-cut”, “G 5 α-cut”,  “G 11 α-cut”, are the gravity centre of the of the 3, 
5 and 11 α-cut shape solutions respectively.  

0
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5 a-cut
G025
G050
G075
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G 2 a-cut
G 5 a-cut
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Figure 4. Fuzzy value of water table level H at position (0, 0) after 1-day drainage with 

S2=0.01 for 11, 5 and 2 α-level cuts 
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Figure 5. Fuzzy value of water table level H at position (0, 0) after 1-day drainage with 

S2=0.01 for 11, 3 and 2 α-level cuts 
 
 
The relative mean square error (rmse) is used in order to compare the defuzzified values of 
the four fuzzy solutions and the results are shown on Table 2.  
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Table 2. The relative mean square error (rmse) of 5, 3 and 2 α-level cuts  

in respect to 11 α-level cuts 
 S1= 0.001 S2 = 0.01 

t (d) rmse  
(G11, G5) 

rmse  
(G11, G3) 

rmse  
(G11, G2) 

rmse  
(G11, G5) 

rmse  
(G11, G3) 

rmse  
(G11, G2) 

0 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 
0,1 0,00275 0,03534 0,28494 0,00001 0,00028 0,00485 
0,2 0,00006 0,00073 0,00515 0,00074 0,00592 0,04830 
0,3 0,00000 0,00001 0,00005 0,00339 0,03369 0,29176 
1 0,00000 0,00000 0,00000 0,00275 0,03534 0,28494 
2 0,00000 0,00000 0,00000 0,00006 0,00073 0,00515 
3 0,00000 0,00000 0,00000 0,00000 0,00001 0,00005 
5 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 

10 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 
20 0,00000 0,00000 0,00000 0,00000 0,00000 0,00000 
 S3 = 0.1  

t (d) rmse  
(G11, G5) 

rmse  
(G11, G3) 

rmse  
(G11, G2) 

   

0 0,00000 0,00000 0,00000    
0,1 0,00000 0,00000 0,00000    
0,2 0,00000 0,00000 0,00000    
0,3 0,00000 0,00001 0,00005    
1 0,00001 0,00028 0,00485    
2 0,00074 0,00592 0,04830    
3 0,00339 0,03369 0,29176    
5 0,00719 0,08148 0,67787    

10 0,00275 0,03534 0,28494    
20 0,00006 0,00073 0,00515    

 
5. CONCLUSIONS 
The analytical solution for two-dimensional drainage problem was used for the investigation of 
the uncertainty of the drainage hydraulic conductivity K and effective porosity on the 
numerical results, utilizing a method of 11, 2, 3 and 5 α-level cuts, using interval analysis 
(Moore,1966). With this analytical solution, the direct solution of the problem concerning the 
two-dimensional groundwater flow was achieved, without iterative calculations, for every point 
and at any time. 
The results are compared with the results of 11 α-level cuts. The solutions are also carried out 
for different values of effective porosity S1=0.001 S2=0.01 and S3=0.1. Table 2 shows the 
relative mean square error (rmse) of all the solutions and differences higher than 0.05 from 
the 11 α-level cut solution are pointed out. Useful information can be derived on the 
necessary number of α-level cuts required in drainage problems  
The results that are shown at Table 2 indicate that the solutions are practically the same for 
drainage with effective porosity S equal to 0.001 and 0.01 when 11, 5 or 3 α-level cuts are 
used. Differences are higher when 2 α-level cuts are used for certain times for all the values 
used for effective porosity S. These differences are shown with bold characters and concern 
the cases of S1=0.001 and t=0.1d, S2=0.01 and t=0.3 and 1d and t=3, 5 and 10d. Differences 
are also found when 3 α-level cut is used when S3=0.1 ad t=5d. 
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In brief we can say that for effective porosities of S1=0.001 and S2=0.01 the use of at least 3 
α-level cuts is mandatory for accurate results, while for an effective porosity of S2 =0.1 is 
necessary to use 5 α-level cuts.  
From Table 1 and Figures 4 and 5 it is  obvious that the defuzzified solution for 11 α-level cuts 
is always closer to the value for which we accepted a membership function equal to (µ(x)=1) 
from the defuzzified solutions of 2,3 and 5 α-level cuts. The restrictions of the iterative 
calculations, truncations errors or logic errors, are removed by the analytical solution which 
permit simpler solution techniques. 
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