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ABSTRACT
When flushing carry out as pressure condition, a scour cone is performed around the outlet. As the
flow around the outlet in the pressure flushing is three dimensional, therefore that it is difficult to
establish a general empirical model to provide accurate estimation for scour cone volume and
length. In this study artificial neural network (ANN) with multi-layer perception which using back-
propagation algorithm (MLP/BP) was used. The scour cone volume (Vf) and length (Lf) were
modeled as a function of three variables; water depth (HW), mean flow velocity through outlet (uf)
and mean grain diameter (D50). For training and testing model, experimental data in two forms of
original and non-dimensional are selected. The results of this research indicate that MLP/BP model
can predict the scour cone volume and length. Finally, sensitivity analysis with original and non-
dimensional data set show that mean flow velocity through outlet (uf) and uf / √(g (Gs-1)D50) have a
greater influence on scour cone volume and length rather than other parameters.

KEYWORDS: pressure flushing, scour cone, MLP/BP ANN model, experimental study, sensitivity
analysis.

1. INTRODUCTION
The number of dam constructions has increased during the last decades, particularly in the tropics
and semi-arid areas where high sediment yields are prominent, and therefore also the problems of
reservoir sedimentation (Brandt, 2000). Siltation poses a severe threat to the operability and life time
of reservoirs (Francke et al., 2008). For desilting of the deposited sediment in the reservoir many
methods can be used. For example these methods are watershed management, dredging, density
current venting, and flushing. In flushing methods, the previously deposited sediment would be
flushed from the reservoir by opening of the outlets. When the flushing takes place under a
sustained water level, only a very limited area in the reservoir is cleared. This is only an option in
reservoirs with small reservoir capacity to water inflow, and large capacity of sluices (Qian, 1982).
In the pressure flushing (under pressurized flow condition) sediment deposits can be scoured in the
vicinity of the sluice-gate opening within a very short period of time. A funnel shaped crater called
flushing cone will be formed by the flushing flow. Once the flushing cone has been formed and there
is no sediment moving into the cone, the water flowing through the opening is clear, that is the
formation of cone is fairly stable and no sediment will be removed from the flushing cone afterward
(Di Silvio, 1990). Figure 1 illustrates the schematic diagram of pressure flushing.
The equilibrium of scour cone volume and length, which is typically developed in a reservoirs after
pressure flushing, depends on the reservoir water (subscript w) depth Hw, depth of deposited
sediment (subscript s) Hs above the intake, fluid density w , sediment density S , intake diameter
DG, water velocity at intake uf, fluid dynamic viscosity  , gravitational acceleration g, and mean grain
diameter d50 of non-cohesive sediment. As the equilibrium scour cone volume Vf and length Lf are
basic variables, they are separately expressed as (Fathi-Moghadam et al., 2010):
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Figure 1. Schematic of the scour cone which developed in front of outlet in the pressure flushing: A-
Longitudinal profile, B- Plan
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Fathi-Moghadam et al. (2010) based on dimensional analysis proposed the following nonlinear
equations to estimate the dimensionless flushing cone volume and length:
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where kv, av, bv and kl, al, bl are coefficients for scour cone volume (subscript v) and length (subscript
l).

In the pressure flushing the flow pattern in the vicinity of the flushing outlets is three dimensional and
also due to the high number of parameters involved in the phenomena, analytical treatment of it is
difficult (Scheuerlein et al., 2004). Therefore in this study, we propose an alternative methodology to
analyze this phenomenon. Artificial Neural Network (ANN) can efficiently tackle the lack of linearity
and the multivariate reservoir flushing behavior, even when the underlying interrelationships of the
variables are unknown (Jain and Chalisgaonkar, 2000). So far artificial neural network (ANN) is
becoming effective tool for providing hydraulic and environmental engineers with more accuracy for
design purposes and management practices (Bateni et al., 2007). ANN has been widely applied in
various areas of hydraulics and water resources engineering (Muttiah et al., 1997; Zhang et al.,
1998; Jain, 2001; Nagy et al., 2002; Li and Gu, 2003; Yitian and Gu, 2003; Agarwal et al., 2005,
Azmathullah et al., 2006; Bateni et al., 2007; Muzzammil, 2008).
For example Panagoulia (2006), investigated the ability of artificial neural network models to
simulate high and low flows in various climate conditions over a medium-sized mountainous
catchment. For this purpose, the author used an algorithm coupling linear least squares and simplex
optimization (LLSSIM) for estimating the weights (parameters) of a three-layer ANN. The daily flows
in three climatically different periods, described by trends of clearly descending, rising and
moderately descending segments in the long-term annual pseudo-precipitation (rain plus melt) of the
Mesochora catchment in central Greece for a 15-year period were used. The study showed that the
ANN model can simulate high and low flows quite well when it is calibrated for increasing values of
pseudo-precipitation and is validated for moderately decreasing values of pseudo-precipitation.
Furthermore, for comparison purposes, the author used physically-based conceptual soil moisture
accounting (SMA) model of the US NWS. Finally the author stated that since the ANN model has no
physically realistic components and parameters, it is by no means a substitute of the SMA model.
Overall, the present study is aimed to evaluate ANN model for the equilibrium scour cone volume
and length in front of bottom outlet.
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2. ARTIFICIAL NEURAL NETWORK (ANN)
An ANN model is a network of simple units, each having a local memory. These units, known as
neurons, are connected by unidirectional links that carry discriminating data (Nagy et al., 2002).
Neural network provide a random mapping in between an input and output vector by mimicking the
biological cognition process of our brain (Azmathullah et al., 2005). Neurons are defined as
mathematical expressions that filter the signal through the net. The net is formed by successive
layers of neurons and each neuron is connected to each of the neurons in the previous layer
(Caamaño et al., 2006). A multi-layer perceptron (MLP) is a typical ANN consists of a number of
nodes that are organized according to a particular arrangement (Figure 2).

Figure 2. Structure of typical MLP model

The transfer function serves to normalize a node’s output signal strength between 0 and 1. Each
node multiplies every input by its interconnection weight, sums the product, and then passes the
sum through a transfer function to produce its result. This transfer function is usually a steadily
increasing S-shape curve called a sigmoid function. Under this threshold function, the output y j from
the jth neuron in a layer is (Bateni et al., 2007)
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where wij is the weight of the connection joining the jth neuron in a layer with the ith neuron in the
previous layer and xi the values of the ith neuron in the previous layer. Back propagation is a
learning algorithm proposed by Rumelhart et al. (1986). In the Back propagation learning algorithm
neural networks process information in interconnecting processing elements (often termed neurons,
units or nodes). In order to compare the performance of various ANN configurations two statistical
parameters were used in this research. These statistical parameters are the root mean square error
(RMSE) and the coefficient of determination, R2, of linear regression line between the predicted
values from either the ANN and regression models and the desired output. These parameters are
defined as:
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where ( )x X X  , ( )y Y Y  , X=observed values, Y=Predicted values, Y =mean of Y, X =mean
of X, ‘n’  is the number of testing patterns.
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3. RESULTS AND DISCUSSIONS
3.1. Regression models
For training and testing of regression and ANN models experimental data which used by Fathi-
Moghadam et al., (2010) and Emamgholizadeh (2008) considered for this research. The kind of
sediments which used by mentioned researchers was non-cohesive sediment. The ranges of
different parameters involved in this study are given in Table 1.

Table 1. Data ranges of the scour cone parameters which used for
estimation of equilibrium scour cone volume and length

Parameters Symbol Range
Scour cone volume (m3) Vf 0.0002-0.0623
Scour cone length (m) Lf 0.155-0.648
reservoir water depth (m) Hw 0.36-1.2
depth of deposited sediment (m) Hs 0.18-0.42
water velocity at intake (m s-1) u 0.26-4.08

The current study used 60 data sets in order to predict equilibrium scour cone volume and length.
The whole data was divided into two parts:
 Training data set consisting 45 data and,
 Validation or testing data set consisting of 15 data points.

For statistics analysis, the experimental data sets were used in two forms - (1) original data and (2)
non-dimensional data. A linear multiple regression method was used to get the regression
parameters of the equilibrium scour cone volume and length prediction models. For this purpose,
75% of all data was used. Validation of these equations was made with the using of reaming 25% of
the data.

 Original data set
As it mentioned in the dimensional analysis section, the effective parameters which influence the
equilibrium scour cone volume ( )fV and length ( )fL was water depth in the reservoir (Hw), water

velocity through outlet )( fu , and the mean grain diameter (d50). Therefore they can be written as the
following equations:

50f f WV u H d       (8)

50f f WL u H d       (9)
By using linear multiple regression, the value of the parameters , ,   and  was achieved
0.04024, 0.00683, -0.00793 and -9.396 for equilibrium scour cone volume ( )fV and 0.519, 0.0314, -
0.0259, and -37.72 for the scour cone length ( )fL . Table 2 shows the regression coefficient (R2) and
RMS Error of equilibrium scour cone volume and length in two stages, (1) training and (2) validation.

Table 2. The results of linear multiple regression models for
equilibrium scour cone volume and length for original data set

Parameter Scour  cone volume Scour  cone  length
Stage Training Validation Training Validation
(R2) 0.89 0.73 0.91 0.53
RMS Error 0.052 0.064 0.048 0.086
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 Non-dimensional data set
Fathi-Moghadam et al. (2010) based on regression analysis proposed the following nonlinear
equations to estimate the dimensionless flushing cone volume and length:
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Therefore for non-dimensional data set these equations were used. Validation of these equations
was made with the using of reaming 25% of data, which were not involved in the calculating of
coefficients. Table 3 shows R2 and RMS Error of equilibrium scour cone volume and length in two
stages, (1) training and (2) validation.

Table 3. The results of linear multiple regression models for equilibrium scour cone volume and
length for non-dimensional data

Parameter Scour  cone  volume Scour  cone  length
Stage Training Validation Training Validation
(R2) 0.89 0.67 0.89 0.52
RMS Error 0.053 0.072 0.065 0.0891

3.2. Development of ANN model
As it mentioned in previous section, the task of identifying the number of neurons in the input and
output layers is normally simple, as it is dictated by the input and output variables considered to
model the physical process. The number of neurons in the hidden layer(s) can be determined
through the use of trial-and error procedure (Bateni et al., 2007). In this study, two types of MLP/BP
models were developed-(1) single hidden-layer ANN models consisting of only one hidden layer and
(2) multiple hidden-layer ANN models consisting of multiple hidden layers. The optimal architecture
was determined by varying the number of hidden layers, and the best structure was selected. The
training of the ANN models was stopped when either the acceptable level of error was achieved or
when the number of iterations exceeded a prescribed maximum of 10000. The learning rate of 0.01
was also used. The models that minimized the error measures described in the previous section
(RMSE) and have high R2 were selected as the optimum.
The data how to present for training is one of the most important aspects of ANN model. Often this
can be done in more than one way. The best configuration was determined by trial and error
methodology (Bateni et al., 2007).
For develop ANN model, two combinations of data were considered as inputs to predict equilibrium
scour cone volume and length. These two input combinations were used to see which one leads to
better results. Five of nine parameters in equations 1 and 2 namely fluid density, sediment density,
fluid dynamic viscosity, outlet diameter, and gravitational acceleration are constant in all
experiments.
Therefore, the first combination involves just three of the nine parameters in equations 1 and 2 that
includes water depth ( wH ), mean flow velocity through outlet ( fu ), and main grain diameter ( 50D )

as the input pattern and the equilibrium scour cone )( fV and length )( fL as the output pattern. The
second combination includes two non-dimensional parameters of equations 3 and 4 as the input

pattern and normalized equilibrium scour volume )/( 3
1

Gf DV and length )/( Gf DL as the output
pattern. Figures.3a and b show the network configuration of MLP/BP that may be used for the
prediction of the equilibrium scour cone volume and length for two combinations of input:
(a)- Original data set (raw data)
(b)- Non-dimensional data.
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Figure 3. The network for ANN model developed using (a) original data set and (b) non-dimensional
data set

3.3. Equilibrium scour cone prediction using the original data set
In this section, first original data is used to establish ANN model. As it is mentioned earlier, in the
ANN model, the number of hidden layer has direct effect to the results of the model. Therefore in
order to investigate the effect of it, the model runs with different hidden layers. As in ANN model
which used in the present study, maximum eight hidden layers can be used, therefore the model
was run with different hidden layer from 1 to 8. The model runs with network configuration of Figure
3a for equilibrium scour cone volume (Vf) and length (Lf), separately. For comparison the results of
the model, the criteria of RMSE and R2 are used. The values of RMSE and R2 range from 0.033-
0.046 and 0.92-0.98, respectively. The achieved results indicted the MLP configuration that included
one hidden layer gave the minimum error and high regression, therefore neural network
configuration (3 3 1) was selected as the optimum model.
Another parameter which influences the results of the model is the transfer function between the
nodes. In order to investigation the effects of it, the model run with different transfer functions
including Sigmoid (  ( ) 1 / 1 exp( )f x x   , Gaussian ( .( ) x xf x e ), Hyperbolic Tangent (

( ) tanh( )f x x ) and Hyperbolic Secant ( ( ) ( )f x Sech x ). The results of the ANN model with different
transfer functions are presented in Table 4.

Table 4. The results of the MLP model with different transfer functions for equilibrium scour cone
volume and length with original data set

Transfer
Function

Type of
Mode

Scour cone volume scour cone length

RMS Error
Regression
Coefficient

(R2)
RMS Error

Regression
Coefficient

(R2)
Sigmoid Training 0.053 0.94 0.046 0.96
Sigmoid validation 0.058 0.67 0.058 0.77

Gaussian Training 0.046 0.96 0.033 0.98
Gaussian validation 0.049 0.75 0.039 0.87

Hyper. Tan. Training 0.052 0.95 0.056 0.94
Hyper. Tan. validation 0.059 0.66 0.042 0.69
Hyper. Sec. Training 0.054 0.94 0.054 0.94
Hyper. Sec. validation 0.051 0.68 0.066 0.65

As the results of Table 4 shows the MLP model has very small RMSE during training (ranging from
0.0033 to 0.049). The results of the model show consistently good correlation throughout the training
and testing (>0.93 for all models). In overall, the training and validation results of the MLP model
with different transfer functions (Sigmoid, Gaussian, Hyperbolic Tangent and Hyperbolic Secant),
show that the Gaussian transfer function gives a little bit better results than the other functions. To
assess the performance of the ANN model, observed equilibrium scour cone volume and length
values are plotted against the predicted ones. Figures 4a and b illustrate the results with the
performance indices between predicted and observed data for the training and testing data sets,
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respectively. As it can be seen from the Figures 4a and b, MLP has performed well in predicting the
equilibrium scour cone volume and length.

Figure 4. Scatter plots comparing observed and predicted equilibrium scour cone volume (a) and
length (b) with original data set using MLP model with Gaussian transfer function for training and

validation patterns

3.4. Equilibrium scour cone volume (Vf) and Length (Lf) prediction using non-dimensional
data set
When network with different input combinations are compared, the training and testing accuracy may
be vary significantly. In order to investigate the effect of it, the ANN model runs with the second data
set (non-dimensional data set).
As the transfer function and number of hidden layers has effect on accuracy of the model, therefore
similar with original data set, model run with different options. The results comparison of ANN model
with different transfer functions and multi hidden layers (from 1 to 8) show that, the ANN model with
Gaussian transfer function and one hidden layer can predict better than other transfer functions and
hidden layer. Table 5 show the training and validation results for the MLP model with Gaussian
transfer, for the second data set.

Table 5. The results of the MLP model for equilibrium scour cone volume and length (with non-
dimensional data set)

Transfer
Function

Type of
Mode

Non-dimensional scour
cone volume

( Gf DV /3
1

)

Non-dimensional
scour cone length

( Gf DL / )

RMS Error R2 RMS Error R2

Gaussian Training 0.0443 0.965 0.03095 0.968
Gaussian validation 0.0482 0.954 0.037 0.957

Figure 5 shows the plotted of observed and predicted equilibrium scour cone volume (Vf) and length
(Lf) with non-dimensional data set using MLP model with Gaussian transfer function for training and
validation patterns.

4. SENSITIVITY ANALYSIS
Sensitivity tests were conducted to determine the relative significance of each of the independent
parameters (input neurons) on the equilibrium scour cone volume and length (outputs). Parameters
of water depth ( wH ), mean flow velocity through outlet ( fu ), and mean grain diameter ( 50D ) were
considered in sensitivity analysis. Table 6 shows the comparison the neural network models, with
one of the independent parameters removed in each case. Furthermore Figures 6a and b show the
percentage contribution of the independent variables of establishing the ANN model for the
equilibrium scour cone volume and length, respectively.
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Figure 5. Scatter plots comparing observed and predicted equilibrium scour cone volume (a) and
length (b) with non-dimensional data set using MLP model with Gaussian transfer function for

training and validation patterns

The results in Table 6 and also in Figures 6a and b show when ANN model run without Uf, the RMS
Error of scour cone volume and length achieved 0.145 and 0.154 and also the regression coefficient
achieved 0.41 and 0.508. In other word the ANN model without Uf rather than other options such as
has ANN model without Hw and d50 has high RMS Error and low regression coefficient. Therefore
the mean water velocity through outlet (uf) has the most significant effect on equilibrium scour cone
volume and length. The effects of the variables on the equilibrium scour cone volume and length,
can be ranked (from higher to lower) in the order fu , WH and 50d .

Table 6. Sensitivity analysis of the parameters for original data set

Method Scour cone volume Scour cone length
RMS Error R2 RMS Error R2

ANN (equations 1 and 2) 0.043 0.976 0.033 0.966
ANN no. Uf 0.145 0. 41 0.154 0.508
ANN no. Hw 0.054 0.83 0.0484 0.81
ANN no. d50 0.043 0.87 0.0438 0.89

Figure 6. Sensitive analysis of the independent variables for determining the percentage contribution
(with original data set) (a) - Vf and (b) - Lf

Similarly, Table 7 gives sensitivity analysis results of the parameters Gsf DGgu )1(/  and Sw HH /

on scour cone geometry. As the results in Table 7 show Gsf DGgu )1(/  and GDd /50 have the

most and the least effect on equilibrium scour cone volume )( fV and length )( fL , respectively. This
results same to result of Fathi-Moghadam et al., 2010. Their sensitivity analysis by SPSS showed
that the

50)1(/ DGgu sf  was the main independent parameters.
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Table 7. Sensitivity analysis of the parameters for non-dimensional data set

Method Gf DV /3
1

Gf DL /

RMS Error R2 RMS Error R2

ANN (equations 3 and 4) 0.0443 0.965 0.03095 0.968
ANN no. ))1(/( Gsf DGgu  0.1393 0.502 0.1533 0.453
ANN no. )/( Sw HH 0.044 0.962 0.0477 0.961

5. CONCLUSIONS
In this paper, the application of the ANN model namely, multi-layer perceptron (MLP/BP) and
regression models in the estimation of equilibrium scour cone volume and length around the outlet in
the pressure flushing has been outlined. The study includes the manipulation of the collected
laboratory data to train and to validate the network. It shows that the neural network approach
predict equilibrium scour cone volume and length. The selection of input variables to the network has
impact on the model accuracy; therefore, based upon dominant parameters, two combinations of
them; original and non-dimensional data set were used for the analysis of network. The MLP
network with one hidden layerwas selected as the optimum network to predict equilibrium scour
cone volume and length. Comparison the results of MLP with different transfer functions (Sigmoid,
Gaussian, Hyperbolic Tangent and Hyperbolic Secant) illustrates that the Gaussian transfer function
was better than the mentioned transfer functions. Comparing the established regressions and ANN
models with using two data set (original and non-dimensional) shows that the ANN model can
predict the equilibrium scour cone volume and length better than the regressions models (tables 2
and 3). Also with respect to the criteria of RMS Error and R2 the comparing the established ANN
models with two data set show that the established ANN model for non-dimensional data is better
than original set (tables 4 and 5). Moreover when data used as non-dimensional form, it can be
neglect the model scale, therefore using data with this form recommended for ANN model.
In the pressure flushing, removing of deposited sediment depend on many parameters such as
mean flow velocity through outlet, water depth and mean grain diameter. The Sensitivity analysis
demonstrated that the mean velocity through outlet (uf) has the most significant effect on equilibrium
scour cone volume and length rather than other parameters such as water depth ( wH ) and mean

grain diameter ( 50D ). Because the mean velocity through outlet represents the role of outflow
discharge (Qf) and size of outlet (DG, diameter of outlet) which these parameters has main effect to
the geometry of flushing cone. Also, Sensitivity analysis show that ))1(/( Gsf DGgu  is the most

influential parameter on
1
3( / )f GV D and )/( Gf DL .
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