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ABSTRACT 
Artificial neural networks are one of the advanced technologies employed in hydrology 
modelling. This paper investigates the potential of two algorithm networks, the feed forward 
backpropagation (BP) and generalized regression neural network (GRNN) in comparison with 
the classical regression for modelling the event-based suspended sediment concentration at 
Jiasian diversion weir in Southern Taiwan. For this study, the hourly time series data 
comprised of water discharge, turbidity and suspended sediment concentration during the 
storm events in the year of 2002 are taken into account in the models. The statistical 
performances comparison showed that both BP and GRNN are superior to the classical 
regression in the weir sediment modelling. Additionally, the turbidity was found to be a 
dominant input variable over the water discharge for suspended sediment concentration 
estimation. Statistically, both neural network models can be successfully applied for the 
event-based suspended sediment concentration modelling in the weir studied herein when 
few data are available. 

KEYWORDS: event-based sediment, turbidity, water discharge, modelling, feed forward 
backpropagation, generalized regression neural network. 
 
 
1. INTRODUCTION 
The main objective of this study is to evaluate the potential of using artificial neural networks 
(ANNs) for modeling Jiasian diversion weir suspended sediment concentration due to tropical 
storms in Southern Taiwan. Recently, significant progresses in the fields of nonlinear complex 
system modelling have been made possible through the ANNs approaches. The ANN is a 
nonlinear mathematical structure capable to model any arbitrarily complex nonlinear process 
such as sediment load and water discharge relationship. The present study employed two 
algorithms, the feed forward backpropagation network (BP) and generalized regression neural 
network (GRNN) in comparison with the classical regression method. 
In deed, estimates of suspended sediment load are essential for the river transportation 
research. According to Altunkaynak (2009), estimation of sediment load is required in 
practical studies for the planning, design, operation and maintenance of water resources 
structures. The sediments transportation monitoring requires a good sample technique which 
is very lengthy and costly (Pavanelli and Palgliarani, 2002). Therefore, it is important to 
develop a model that can predict accurately the suspended sediment concentration from 
continuous water data set. The sediment load process is a highly nonlinear and complex 
system. However, the classical regressions despite of their inability to represent successfully 
the nonlinear complex system have been widely used in sediment process to establish 
continuous relationship between water discharge, turbidity and suspended sediment (Lewis 
and Eads, 1996; Wang et al., 2006). 
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The emergence of ANN technology has given many promising results in the field of hydrology 
and water resources for solving the nonlinear system complexity problem (Sudheer et al., 
2003; Adeloye and Munari, 2006). The hydrological characteristics of the river such as the 
temporally and spatially changing of sediment concentrations, and the difficulties for their 
estimation encouraged the employment of the ANN models. In the river sediment loads 
modelling study during storm events of short duration, Rai and Mathur (2008) found the 
neural network as a suitable estimation tool in two catchments areas of United States of 
America. The availability of few data as well as the complex nonlinear process of sediments 
provided an impetus to investigate the potential of using the ANNs techniques for suspended 
sediment concentration modelling in the Jiasian diversion weir. The weir is built to supply 
water for civil and industrial use, nowadays; the demand for clean water has increased 
around the weir. The study compares the performance of BP, GRNN and classical regression 
in modelling the weir suspended sediment concentration estimation using continuous hourly 
water discharge and turbidity data collected during the storm events from July to October 
2002. The data time scale of most of the papers is usually daily or monthly scaled. As well, 
few studies reported the use of ANN in event-based sediment concentration modelling 
(Agarwal et al., 2005; Raghuwanshi et al., 2006; Rai and Mathur, 2008). This research has 
potentially an advantage to monitor the event-based suspended sediment concentration flux 
at short time step of storm events. The ANNs may overcome the low performance often met 
in the classical regression method and improve the accuracy of rivers suspended sediments 
concentration estimation. Sediment estimation is essential in Jiasian diversion weir to provide 
basic information on a wide range of problems related to the water quality monitoring, the 
operation systems and the river management. 
 
2. STUDY AREA AND DATA NORMALIZATION 
Jiasian diversion weir is located in Chishan River, Southern part of Taiwan at 22 57’ 30” North 
latitude and 120 12’ 0” East longitude (Figure 1). The Chishan River is a tributary of the 
Kaoping River which is one of the major rivers in Taiwan. The weir was built for supplying 0.3 
million m3 of water per day averagely for civil and industrial use. Also, the weir is a 
continuation of the Nanhua Reservoir which provides 0.8 millions m3 of water per day. During 
the wet period, the surplus water of the Kaoping River is channeled into the Tsengwen 
Reservoir for allocation and storage. In this location, the average annual rainfall is 2794.4 mm 
with an abundance rainfall occurring in the wet season from May to October, conversely to 
the dry season from November to April. In the last fifty years, the total rainfall averages in dry 
and wet seasons were 235.9 and 2558.5 mm, respectively. 

Jiasian diversion weir

Kaoping River basin 

Nanhua Reservoir 

Transbasin Diversion Tunnel

Tsengwen Reservoir 

 
Figure 1. Sketch map of the investigation area. 

 
The data sets were comprised of water discharge (m3 s-1), turbidity (NTU) and sediment 
concentration (mg L-1) collected from July 18, 2002 to October 10, 2002. Hourly data sampling 
were obtained during the storm events. The hourly sediment data have been collected 
because of the typical rainfall pattern and topography of the investigation area where most of 
the suspended sediment concentration is due to the typhoon storms. The water samples were 
analyzed by turbidimeter which applies a nephelometry technique that measures the level of 
light scattered by particles at right angles (90o) to the incident light beam. The data sets had a 
total of 1309 patterns and were divided into two sets for the purpose of training (50%) and 
testing (50%) to reach the best generalization (SNNS, 1995). The training data sets are used 
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to train the neural networks by minimizing the error of these data sets during the training. 
Then, the test sets are used for checking the overall performance of the trained networks. To 
prevent the effect of extreme values in the data sets and to match the sigmoid type of transfer 
function, which has a range of values between 0 and 1, the input and output data are 
normalized using the following transformation equation (Yeh, 1997). 

i min
norm

max min

Y Y
Y

Y Y
−

=
−

         (1) 

Where, normY  is the normalized dimensionless variable; iY  is the observed value of 
variable; minY  and maxY  are the minimum and maximum values of the variables, respectively. 
 
3. ARTIFICIAL NEURAL NETWORKS AND MODELS EVALUATION 
The artificial neural network (ANN) is a massively parallel-distributed information processing 
system that has certain performance characteristics resembling to the biological arrangement 
of neurons in human brain (Kumar et al., 2008). An ANN establishes a data-driven nonlinear 
relationship between inputs and outputs of a system. Thus, there have been numerous 
successful applications of artificial neural network in forecasting the future evolution of 
complex systems such as sediments flux from water flow data. The neural network typically 
consists of an input layer, an output layer and a layer of nonlinear processing elements, 
known as the hidden layer. The ANN has several algorithms used in forecasting and 
modelling processes. In this study, the feed forward backpropagation (BP) and generalized 
regression neural network (GRNN) algorithms were selected for modelling the suspended 
sediment concentration. 
The most commonly used artificial neural network in hydrological predictions is the BP 
algorithm (Kerh and Ting, 2005). BP is a supervised learning technique used for training the 
neural networks. Basically, it is a gradient descent technique to minimize some error criteria. 
BP has been widely used in approximating a complicated nonlinear function. The BP network 
structure in this study possessed a three-layer learning network consisting of an input layer, a 
hidden layer and an output layer (Figure 2). The variables X1, X2 and Y represent the turbidity 
(NTU), water discharge (m3 s-1) and suspended sediment concentration (mg L-1), respectively. 
The mathematical equation of each layer may be written as following: 

    o io i oY Φ[ (W X θ )]= −∑               (2) 
Where oY  is the output of the neuron o , ioW  is the weight increments between i  and o , iX  
is the input signal generated for neuron i , oθ  is the bias term associated with neuron o , and 
the nonlinear activation function Φ  is assumed to be a sigmoid function as xΦ(x) 1/(1 e )−= +  
for the continuous and differential process. 
GRNN can be treated as a normalized radial basic function network in which there is a hidden 
unit centered at every training case. By definition, the regression of a dependent variable Y on 
an independent X estimates the most probable value for Y, given X and a training set. The 
regression method will produce the estimated value of Y with a minimized root mean square 
error. GRNN is a method for estimating the joint probability density function of X and Y, given 
only training set. Because the probability density function is derived from the data with no 
preconceptions about its form, the system is perfectly general. The success of the GRNN 
depends on the selection of the appropriate smoothing factors (α) (Wasserman, 1993). 
Figure 3 shows a schematic diagram of generalized regression neural network architecture. 

X1

             Y
X2

Hidden layerInput layer Output layer  

X1

         Y
X2

Pattern layerInput layer Summation layer      Output  
Figure 2. Schematic diagram of BP 

architecture 
Figure 3. Schematic diagram of GRNN 

architecture 
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The classical model regressing sediment concentration to water discharge or turbidity variable 
has a power equation form and stemmed from the rating curve (Morehead et al., 2003; Wang 
et al., 2006). The sediment rating curve generally represents a functional relationship of the 
form:   b

sY aX=                  (3) 
Where sY  represents the suspended sediment concentration, X is the turbidity or water 
discharge variable, and a and b  are the constants. 

The performances evaluation criteria were the root mean square errors (RMSE) and 
the coefficient of determination (r2) expressed between estimated and observed suspended 
sediment concentration as: 

N
2
i

i 1
d
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N

==
∑

                (4) 

Where id  is the difference between ith estimated and ith observed values of suspended 
sediment concentration and N  is the number of observations. The coefficient of 
determination used to evaluate the performance of the models is defined as follows: 
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Where iy  and iy′  are the ith observed (actual) and estimated values of y , and y  is the mean 
of the observed values of y ; and N  is the number of observations. 
 
4. COMPARISON OF ESTIMATION RESULTS 
The feed forward back propagation (BP) algorithm is a commonly applied three layers 
network type consisting of an input layer, a hidden layer and an output layer. The 
determination of the number of nodes in a hidden layer providing the best training results was 
the initial process of the training procedure. The suspended sediment concentration 
estimation was carried out with the BP by considering the turbidity and water discharge as 
associate inputs of the network. Various hidden nodes numbers were tried for the BP 
algorithm. The configuration with 2 input nodes, 4 hidden nodes and unique output denoted 
as BP (2 4 1) provides the best performance during the training stage, i.e. highest r2 (0.951). 
The final and most important step in this work of neural network is to test the configuration 
designed. The networks were tested using different input and output values that were not 
given for training previously. Table 1 summarizes the networks performance during the 
training and testing stages. Figure 4 shows the plots and scatters of estimated and observed 
sediment concentrations when the network used as inputs the turbidity and water discharge 
(a, b); turbidity (c, d), and water discharge (e, f). 
During the testing period, BP (2 4 1) produced the closest values to the observed suspended 
sediment concentration by its highest r2 (0.943) as shown in Figures 4a and b. In this 
configuration, the network has two inputs; hourly turbidity and water discharge for estimating 
the suspended sediment concentration. By using a single input variable, it has been observed 
that, the performance criteria of BP were higher for turbidity (RMSE=0.0334, r2=0.938) than 
water discharge (RMSE=0.0525, r2=0.846) during the testing period. In this configuration, the 
network has one input; two hidden nodes and unique output. Figures 4 (c, d) and (e, f) show 
the plots and scatters of estimated and observed sediment concentrations from turbidity and 
water discharge used as a single input variable, respectively. From these results of using a 
single input in the network, the turbidity seems to be a dominant variable over water 
discharge in Jiasian diversion weir suspended sediment concentration estimation. 
 
 
 
 
 



NEURAL NETWORKS APPROACHES FOR MODELLING RIVER SUSPENDED SEDIMENT 461 

 

Table 1. Performance of BP during the training and testing stages 

Training  Testing Neural Network 
configuration  

Neural Network 
model input 

Nodes in 
hidden layer r2  RMSE r2 

BP (2 4 1) Q, T 4 0.951  0.0336 0.943 
BP (1 2 1) T 2 0.924  0.0334 0.938 
BP (1 2 1) Q 2 0.879  0.0525 0.846 

 

Figure 4. Suspended sediment concentration estimated by BP during the testing period using 
turbidity and water discharge (a, b), turbidity (c, d), and water discharge variables 

(e, f) as the networks inputs 
 
In addition, the turbidity alone shows similar results with the BP (2 4 1) through the close 
values of their RMSE and coefficients of determination. Conversely, when water discharge 
alone is used in the network, the performance is poor. In both training and testing periods, the 
BP with two inputs (turbidity and water discharge) has an advantage of a good estimation of 
suspended sediment concentrations than using a single water discharge, which reduced the 
performance (r2) of the network showed in Table 1. BP algorithm may not lead to good 
generalization properties for the network when the input data are limited (Sudheer et al., 
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(b) y = 1.0098x
r2 = 0.943
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(d)
y = 0.9976x
r2 = 0.938
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(f) y = 0.8987x
r2 = 0.846
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2003). It was observed in this study that, use of a single input with BP algorithm might 
decrease the performance of the estimation of the suspended sediment concentration. In 
general, from the results of this study, BP was found as a potential alternative estimation 
method which could be used for a better monitoring of sediments flux in the study site. 
Cigizoglu and Kisi (2006) reported that, BP network approach which is a nonlinear black-box 
model seems to be a useful alternative for modelling the complex suspended sediment series.  
The generalized regression neural network (GRNN) performance analysis was carried out by 
trying different smoothing parameters in order to obtain the best criteria. Similarly to BP (2 4 1), 
the network structure GRNN (2, 0.01, 1) with 2 inputs, smoothing parameter 0.01 and 1 
output gave the highest r2 (0.979) during the training stage (Table 2). However for the testing 
stage given in Table 2, GRNN (1, 0.01, 1) with only turbidity data as input provided the best 
performance (RMSE=0.0367, r2=0.931). Figure 5 shows the plots and scatters of estimated 
and observed suspended sediment concentration during the testing period with the GRNN 
networks using turbidity and water discharge (a, b); turbidity (b, c), and water discharge (e, f). 
Although BP gave slightly a better performance than GRNN, statistically, both estimation 
methods produce similar good results. Therefore, the performances criteria obtained with 
GRNN and BP configuration suggest these two methods for suspended sediment 
concentration estimation in the Jiasian diversion weir. Further observations of GRNN show 
similar results with BP for turbidity (RMSE=0.0367, r2=0.931) which was found as a dominant 
parameter over water discharge (RMSE=0.0553, r2=0.836) for suspended sediment 
concentration estimation. According to Zhu et al. (2007), other factors which are not included 
in the network inputs could explain this poor relationship between sediment and water 
discharge. It has been documented at least by Zhou et al. (2004) and Lu (2005) that the 
human activity related to land surface disturbance increase the suspended sediment flux. 
Study done by Sahoo et al. (2006) on the catchments hydrological processes data analysis 
revealed that, the water quality parameters are mostly affected by weather forces and land 
use of the catchments. The human activity could increase the suspended flux independently 
to the water discharge. This could explain the poor relationship between water discharge and 
suspended sediment concentrations recorded at the weir. 
For the classical regression, the data selected for training were used to build up the models, 
and then the testing data were used to evaluate their performances. Figures 6 showed the 
classical models by regressing suspended sediment concentration to the turbidity (a) and 
water discharge (b) variables, respectively. The coefficient of regression of the model 
obtained from the turbidity variable (r2=0.898) is better than water discharge (r2=0.609). 

 
Table 2. Performance of GRNN during the training and testing stages 

Training  Testing Neural Network 
configuration  

Neural Network 
model input r2  RMSE r2 

GRNN (2, 0.01, 1) Q, T 0.979  0.0388 0.925 
GRNN (1, 0.01, 1) T 0.930  0.0367 0.931 
GRNN (1, 0.01, 1) Q 0.894  0.0553 0.836 

 
The performances evaluation showed clearly in Figures 7 (a, b) and (c, d) that the classical 
model using turbidity (r2=0.891) and water discharge (r2=0.547) variables performs poor than 
the artificial neural networks. The classical model cannot estimate the nonlinear suspended 
sediment flux with high accuracy, due to their simple structure and mathematical methods. 
Jain (2001) and Sarangi and Bhattacharya (2005) in their comparative studies concluded that 
the ANNs provided high accuracy than the classical model in sediment modelling. Kisi (2004) 
also demonstrated the evidence of ANN ability in daily River suspended sediment 
concentration modelling. According to Brikundavyi et al. (2002), the performance of the BP 
was found to be superior to conventional statistical and stochastic methods in continuous flow 
series forecasting. The superiority of artificial neural networks over a conventional method in 
the reviewed prediction study can be attributed to their capability to capture the nonlinear 
dynamics and generalize the structure of the whole data set (Celikoglu and Cigizoglu, 2007). 
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Obviously, using the artificial neural networks for modelling sediment estimation is more 
reliable than the classical method in the weir studied herein. 
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(b) y = 1.004x
r2 = 0.925
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(d) y = 0.9984x
r2 = 0.931
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(f) y = 0.9329x
r2 = 0.836
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Figure 5. Suspended sediment concentration estimated by GRNN during the testing period 

using turbidity and water discharge (a, b); turbidity (c, d) and water discharge (e, f) 
as the networks inputs 

 
5. CONCLUSIONS 
The suspended sediment concentration modelling in Jiasian diversion weir is necessary for a 
continuous monitoring of the weir water quality, which demand has recently increased. In this 
study, the artificial neural networks methodologies were applied to estimate the weir hourly 
event-based suspended sediment concentration due to tropical storm by using the turbidity 
and water discharge as input variables. From the results of this study, the BP configuration 
established shows the highest statistical performance in the sediment estimation when the 
turbidity and water discharge data were used as associated input variables in the network. 
While, the GRNN showed its highest performance in the suspended sediment concentration 
estimation with the turbidity data used as a single input variable of the neural network. It was 
found in all models that the turbidity seems to be a dominant input variable over water 
discharge for the suspended sediment concentration estimation in the Jiasian diversion weir. 
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Figure 6. Classical models determined by regressing suspended sediment concentration 
versus turbidity (a) and water discharge (b) using the rating curve equation with 

the data selected for the training period 
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Figure 7. Comparison of the suspended sediment concentration estimated by the classical 
regression models using turbidity (a, b) and water discharge (c, d) during the testing 

period in the Jiasian diversion weir 
 
The poor estimation of the sediment from the water discharge could be explained probably by 
others factors such as human activity related to the land surface disturbance which could 
increase the sediment flux independently to the water discharge. The models performances 
evaluation showed both BP and GRNN statistically superior to the classical regression 
regardless of the input sets. Therefore, both BP and GRNN configurations can be suggested 
as potential tools for modelling the event-based suspended sediment concentration in the 
Jiasian diversion weir when few data are available. Obviously, artificial neural networks are 
more reliable than the conventional regression method to monitor continuously the weir water 
quality. 
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