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ABSTRACT  
An artificial neural network (ANN) model-based approach was developed and applied to estimate 
values of air temperature and relative humidity in remote mountainous areas. The application site 
was the mountainous area of the Samaria National Forest canyon (Greece). Seven meteorological 
stations were established in the area and ANNs were developed to predict air temperature and 
relative humidity for the five most remote stations of the area using data only from two stations 
located in the two more easily accessed sites. Measured and model-estimated data were compared 
in terms of the determination coefficient (R2), the mean absolute error (MAE) and residuals 
normality. Results showed that R2 values range from 0.7 to 0.9 for air temperature and from 0.7 to 
0.8 for relative humidity whereas MAE values range from 0.9 to 1.8 oC and 5 to 9%, for air 
temperature and relative humidity, respectively. In conclusion, the study demonstrated that ANNs, 
when adequately trained, could have a high applicability in estimating meteorological data values in 
remote mountainous areas with sparse network of meteorological stations, based on a series of 
relatively limited number of data values from nearby and easily accessed meteorological stations. 

KEYWORDS: Microclimate, Artificial neural networks, Estimation, Prediction, Mountain canyon, 
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1. INTRODUCTION 
In mountain regions, meteorological factors such as the solar radiation, the air temperature and the 
humidity in combination with the intense relief, different slopes, orientations and other topographic 
irregularities may result in a variety of local microclimates (Barry, 2001). On the other hand, in such 
areas the meteorological stations network is sparse due mainly to the difficulty of installing and 
maintaining the instrumentation. In other cases, meteorological data in the desired or required 
spatial resolution for climatic and bioclimatic assessments are not readily available. In such cases, 
there is thus a need to estimate data for meteorological parameters not recorded at several locations 
using observations of the same variable recorded at other sites. Therefore, researchers are often 
forced to evaluate these conditions using several methods: from data collected in nearby sites (Tang 
and Fang, 2006); using spatial interpolation techniques such as kriging, thin plate splines, inverse 
distance weighting (Tveito and Schöner, 2002); and using process-based techniques (e.g. Bolstad et 
al., 1998). Despite the fact that such techniques are commonly used, they suffer from limitations in 
areas with complex terrain. Recently ANN models have started to be applied in various aspects of 
the atmospheric sciences, (Benvenuto et al., 2000; Melas et al., 2000; Dimopoulos et al., 2004;  
Mihalakakou et al., 2004; Perez and Reyes, 2006; Tsiros et al., 2009). ANN model applications to 
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meteorological data values estimations are, in general, very few (Cheng et al., 2002; Dimopoulos et 
al., 2005; Chronopoulos et al., 2008).  
 
The purpose of the present work is to apply ANN models to estimate values for selected 
meteorological parameters in a number of sites as a function of the corresponding values of one or 
more reference stations located far away from the sites. The study area was the National Forest 
canyon of Samaria located in southern Greece. A previous study of the authors focused on 
estimating data for two stations located inside the canyon using data from two different stations also 
located inside the canyon (Dimopoulos et al., 2005). The examined period was the warm period of 
the year 2003. The present study, however, examines the application of ANN models to estimate air 
temperature and relative humidity for the five most remote stations of the area using data only from 
two stations located in the two more easily accessed sites. In addition, the present modelling effort 
uses data for 3 different years and from totally 7 stations located in the study area. 
 
2. STUDY AREA AND DATA 
The application site was the canyon of Samaria, a mountainous National Forest, located on the 
southwest Crete Island, Greece. The canyon extends from 35º18´27´´N and 23º55´06´´E  to  
35º14´40´´N  and  23º58´01´´E , covering a total distance of about 18 km. The dataset used in the 
present work consists of measured mean hourly temperature and humidity data for 7 meteorological 
stations established in the canyon for the purposes of the present study and for the following time 
periods: 12/6/2003 – 4/8/2003 (total 1264 measurements), 6/8/2004-15/9/2004 (total 962 
measurements) and 20/6/2005-27/10/2005 (total 3120 measurements). The meteorological stations 
were HOBO type of Onset Computer Corporation. The sensors were protected with radiation shields 
and were placed on trees about 1.5m above ground. All measurements were taken every 10 minutes 
and then were averaged to hourly values. Some statistics of the measured air temperature and 
relative humidity data are shown in Tables 1 and 2.  
 
3. THE ARTIFICIAL NEURAL NETWORK (ANN) MODEL 
The multilayer perceptron (MLP), the most commonly used artificial neural network model, was 
adopted for the present study. For the multilayer perceptron, the output with one hidden layer is 
given by (Rumelhart et al., 1986a):  
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where I is the number of hidden nodes, n is the number of input variables, wei and wis are the 
weights of the input-to-hidden and hidden-to-output layer, w0 and ws are the corresponding 
thresholds (bias), iφ  and sφ are the units’ activation functions. 
 
For model training, the back propagation algorithm was used, which is the most frequently used 
algorithm for training (Rumelhart et al., 1986b). The activation function for the hidden units as well as 

the output unit is the logistic sigmoid function ( ) ( )11 −−+= xexφ . A major consideration in the use of 
MLP for model building is the determination of the optimal architecture of the network (number of 
inputs, number of layers and number of nodes per layer). Usually, a trial-and-error method is applied 
to test various alternative models with possibly different architectures, different values for the training 
parameters and initial training conditions and choose the one with the best performance. A network 
can fit the training data arbitrarily closely, but will not necessarily lead to its optimal generalisation 
ability, i.e. its ability to predict data other than those on which it has been trained. One commonly 
used method for model architecture selection and model testing is to use only part of the data for 
training the network. The remaining data is used to estimate the generalisation ability of the network 
(hold-out method). In the present work, the training set consisted of ½ of the data, the set for 
network architecture selection of ¼ of the data and the test set of the remaining ¼ of the data for the 
estimation of the generalisation ability, randomly assigned. The model network developed uses one 
hidden layer with 5 nodes since it was found that this is the number of layers that gives the best 
results on the selection set. 
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4. RESULTS 
The ANN models were used to predict air temperature and humidity for the most remote stations of 
the area, S2 – S6, using data only from stations S1 (entrance of the canyon) and S7 (end of the 
canyon), located in the more easily accessed areas. Measured and estimated data of the test set of 
both air temperature and relative humidity were compared in terms of the determination coefficient 
(R2) and the mean absolute error (MAE) (Table 3). R2 values range from 0.7 to 0.9 for air 
temperature and from 0.7 to 0.8 for relative humidity whereas MAE values range from 0.9 to 1.8 oC 
and 5 to 9%, for air temperature and relative humidity, respectively.  
 

Table 1. Statistics of the measured air temperature (οC) data 

2003 2004 2005 
Station 

Mean Standard 
Deviation Mean Standard 

Deviation Mean Standard 
Deviation 

S1 22.0 3.0 18.8 4.5 18.1 4.8 
S2 28.1 3.6 24.4 5.3 23.2 6.1 
S3 26.8 3.9 24.9 4.4 23.4 5.4 
S4 26.5 3.8 24.9 4.0 23.7 4.3 
S5 26.8 4.1 25.3 4.1 23.8 5.7 
S6 26.3 3.3 25.4 3.2 24.2 4.6 
S7 27.2 2.8 25.9 3.0 25.5 4.5 

 
Table 2. Statistics of the measured relative humidity (%) data 

2003 2004 2005 
Station 

Mean Standard 
Deviation Mean Standard 

Deviation Mean Standard 
Deviation 

S1 38.3 9.5 51.9 19.8 59.9 16.0 
S2 33.8 12.4 37.6 15.4 44.0 19.6 
S3 34.7 12.3 38.4 13.4 45.8 20.5 
S4 35.2 12.2 38.3 12.2 51.0 23.1 
S5 39.0 14.1 40.0 13.0 50.8 24.5 
S6 46.9 15.5 46.1 13.5 47.6 17.2 
S7 44.1 13.4 45.5 12.9 48.3 15.4 

 
Table 3. Values of the determination coefficient (R2) and the mean absolute error (MAE) of the ANN 

models predictions for air temperature and humidity at the stations along the canyon 

Air Temperature Relative Humidity 
Station 

R2 MAE, 
(oC) R2 MAE  

(oC) 
S2 0.90 1.4 0.83 5.6 
S3 0.89 1.3 0.80 6.3 
S4 0.72 1.8 0.73 8.6 
S5 0.86 1.6 0.73 8.9 
S6 0.92 0.9 0.80 4.6 
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Figure 1. Scatter plots of observed versus predicted values of air temperature for the five stations 

inside the canyon 
 
For the robustness of the model predictions, the distribution of the residuals was also examined. The 
normality of the residuals was also examined using the Shapiro-Wilk normality tests and it was found 
that residuals had a normal distribution. In addition, the relationship between residuals and the 
model-estimated values showed independence. Figures 1 and 2 show the scatter plots of the 
observed values versus the predicted ones, for air temperature and relative humidity estimations, 
respectively. 
 
5. CONCLUSION 
The results of the present study can be considered satisfactory since the artificial neural network 
model developed from a set of ‘training data’ was found able to predict microclimatic parameters for 
the remote stations of the study area using data from more easily accessed areas. The approach 
proposed in the present study may be used to any site, assuming that ANNs are adequately trained. 
ANN training, however, requires a relatively large number of microclimatic data times series and this 
may be an important limitation in some cases.  
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Figure 2. Scatter plots of observed versus predicted values of relative humidity for the five stations 

inside the canyon 
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