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ABSTRACT 
There is an emerging need to support water and food policy and decision making at the global 
and national levels. A systematic tool that is capable of analyzing water-food relationships 
with high spatial resolutions would be very useful. A GEPIC model has recently been 
developed by integrating a crop growth model with a Geographic Information System (GIS). 
The GEPIC model was applied to simulate crop yield and crop water productivity (CWP) for 
maize at a spatial resolution of 30 arc-minutes on a global scale. A comparison between 
simulated yields and FAO statistical yields in 124 countries shows a good agreement. The 
simulated CWP values are mainly in line with the measured values reported in literature. The 
crop yield and CWP were simulated with the assumption of sufficient water and fertilizer 
supply, holding other factors unchanged. The simulation results show that many countries 
have the potentials in achieving high maize yields and CWP. More than 80% of African 
countries have the potential to double their CWP. This reflects the current poor water and 
fertilizer management there. The results imply that efforts have to be strengthened to improve 
water and fertilizer management should the malnutrition be reduced or even eliminated.  
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1.  INTRODUCTION 
With the population growth and relevant development, water has become increasingly scarce 
in a growing number of countries and regions in the world. As the largest water user, the 
agricultural sector is facing a challenge to produce more food with less water, or to produce 
more crops per drop (Molden et al., 2003).  
To better understand the global water-food relationship, it is necessary to provide accurate 
crop yield and crop water productivity (CWP, defined as the ratio of crop yield to actual 
evapotranspiration) data at a large scale and with a high resolution. However, traditional 
methods are not sufficient for estimating crop yield and CWP on a global scale given large 
spatial and temporal variations across different geographical locations (Liu et al., 2007a). As 
the escalation of water scarcity and the integration of world economy, there is an emerging 
need to support water and food policy and decision making at the global and national levels. 
A systematic tool that is capable of analyzing water-food relationships at high spatial 
resolutions would be very useful.  
The integration of GIS with a crop growth model can increase the range of applicability of the 
crop growth model. In this paper, we developed and tested a GIS-based EPIC (Environmental 
Policy Integrated Climate) model to simulate crop yield and CWP by considering different 
factors such as climate conditions, soil properties, land use, water and fertilizer management 
etc. GEPIC was applied to simulate yield and CWP for maize on a global scale at a grid 
resolution of 30 arc-minute on the land surface.  
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2. MODEL DESCRIPTION AND DATA USED 
2.1. The GEPIC model 
The GEPIC model is a GIS-based EPIC model designed to simulate the spatial and temporal 
dynamics of the major processes of the soil-crop-atmosphere-management system (Liu et al., 
2007a; 2007b). The core of the GEPIC model is a widely applied and well calibrated EPIC 
model, which uses a daily time step to simulate the processes of weather, hydrology, crop 
growth, nutrient cycling, tillage, plant environmental control and agronomics. EPIC uses 
radiation-use efficiency in calculating photosynthetic production of biomass. Intercepted 
photosynthetic active radiation is estimated with a Beer’s law equation (Monsi et al., 1953). 
Potential increase in biomass for a day is estimated using Monteith’s approach (Monteith, 
1977). Actual daily biomass is calculated by accounting for stresses from water shortage, 
unfavorable temperature conditions, nitrogen and phosphorus deficiencies, and poor soil 
aeration. Dry crop yield is estimated by multiplying the above-ground biomass at maturity by a 
water stress adjusted harvest index. Five methods are offered to estimate potential 
evapotranspiration, including the Hargreaves method (Hargreaves and Samani,1985). The 
Hargreaves method is employed in this study because all required input data of this method 
are available. Actual evapotranspiration is calculated by an approach similar to that of Ritchie 
(Ritchie, 1972). Detailed description of the EPIC model can be found in Williams et al. 
(Williams et al., 1989). In the GEPIC model, CWP is estimated by dividing a fresh yield by the 
actual evapotranspiration. The fresh yield is calculated by adjusting the dry yield with a 
moisture content of 14% in maize seeds. 
Loose coupling approach is used to integrate EPIC with GIS. This approach relies on the 
transfer of data files between a simulation model and GIS. With this approach, the simulation 
model does not need to be redesigned, and much redundant programming can be avoided. 
The resultant GEPIC model has specific input and output data translation modules designed 
in ArcGIS (version 9.0). Some features of a data file editor, or Universal Text Integration 
Language (UTIL), are also used in the process of transferring raw input data into EPIC 
required inputs. The flow chart of the integration is illustrated in Figure 1, and detailed 
description of the integration is given in (Liu et al., 2007a). 
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Figure 1. The schematic representation of the integration of EPIC with GIS  

(according to Liu et al., 2007a) 
 

2.2. Data 
Six types of data are necessary for the GEPIC model: site information (latitude, longitude, 
elevation and slope), soil parameters, land use data, climate data, plant parameters, and 
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management data, such as irrigation and fertilizer application. The data on elevation, slope, 
soil parameters, land use, and irrigation were collected in a raster data format. The elevation 
data were obtained from the 30 arc-second digital elevation model GTOPO30 of the United 
States Geological Survey (USGS). Terrain slopes were from the 30 arc-second HYDRO1K 
digital raster slope map, which defines the maximum change in the elevations between each 
cell and its eight neighbors. Soil data of depth and texture (percent sand and silt) were 
obtained from the Digital Soil Map of the World (DSMW) (FAO, 1990). Soil data of pH, organic 
carbon content, and calcium carbonate fraction were from ISRIC-WISE International Soil 
Profile Data Set (Batjes, 1995), which presents these soil parameters at a spatial resolution of 
30 arc-minutes. Bulk density is calculated with pedotransfer function (Saxton et al., 1986) 
based on the thickness and texture in each soil layer. The geographic distribution map of 
maize is obtained from (Leff et al., 2004). This map describes the fraction of a grid cell 
occupied by maize with a spatial resolution of 30 arc-minutes. The irrigated area data were 
obtained from a 30 arc-minute global map of irrigated areas generated by the Center for 
Environmental Systems Research, University of Kassel (Döll and Siebert, 2000). All the 
above datasets were converted into those with the simulation resolution of 30 arc-minutes 
(Liu et al., 2007a).  
The daily maximum and minimum temperatures and precipitation data over 1977-1993 were 
derived from the Global Daily Climatology Network (GDCN) (Version 1.0) (Gleason et al., 
2002). Daily climate data from 1994 to 2004 were downloaded from the website of the 
National Climate Data Center (NCDC) (www.ncdc.noaa.gov). The amount of fertilizer applied 
per country and crop was mainly derived from the international fertilizer association. The 
default crop parameters of maize were used in the GEPIC model. The statistical national 
average yields of maize were obtained from FAOSTAT (FAO, 2006). 

 
Figure 2. Spatial distribution of crop yield and crop water productivity of maize 
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3. RESULTS 
3.1. Spatial distribution of crop yield and crop water productivity (CWP) 
Figure 2 shows the worldwide distributions of crop yield and CWP of maize in 2000. Both crop 
yield and CWP differ significantly across countries and even within a country. In 2000, the 
USA, China, and several Western European countries achieved high yields (>6000 kg ha-1), 
as well as high CWP (>1.5 kg m-3), while many African countries generally suffered from low 
yields (< 2000 kg ha-1), and low CWP (<1 kg m-3).  
To our best knowledge, there exists no statistical yield data in raster format on a global scale. 
This makes grid-grid comparison between statistical yield and simulated yield impossible. The 
FAO, in collaboration with the International Institute for Applied Systems Analysis (IIASA), 
estimated the global potential crop yield (Fischer et al., 2002). Although valuable, this product 
only indicates the potentials of crop yield with different input combinations, and does not 
reflect the current levels of maize yield.  
The lack of comparable data makes our effort unique, but also presents us with the challenge 
of performing a comprehensive quality assessment. To quantitatively assess the performance 
of the model, the simulated yield data in individual grids were aggregated into national 
averages. The GEPIC model is tested by comparing the simulated national average yields 
with the statistical averages (Figure 3). A total of 124 countries were compared, where both 
simulated and statistical yields were available. The total maize production in these countries 
accounted for about 98% of the total world maize production (FAO, 2006). 
In Figure 3, the dashed line is the 1:1 line and the solid line is the linear trend line setting 
intercept at the origin. The trend line is close to the 1:1 line. The simulated yields and the 
statistical yields are quite comparable, as indicated by a highly significant F-test (the P value 
is higher than 95%) and a high R2 value (0.70). The slope is not significantly different from 1. 
The statistical tests indicate a good performance of the GEPIC model in simulating crop yields 
for maize. 
The deviations of simulated yield from statistical yield are small in most countries, except in 
some high-yielding ones (Figure 3). One major reason is the assumption of the automatic 
flood irrigation used in the GEPIC model. This assumption does not take different irrigation 
technology and irrigation management level into account. However, in reality, irrigation 
technology and management may likely developed unevenly across countries. For example, 
technological breakthrough has helped Israel develop advanced water-saving irrigation, which 
increase both crop yield and water use efficiency (Shanan and Berkowicz, 1995). The 
assumption of universal flood irrigation does not reflect the technology breakthrough in 
irrigation, and therefore may lead to the underestimation of maize yield and CWP in the 
countries with wide application of advanced irrigation techniques (e.g. in Israel). Some 
developing countries, e.g. Poland and Slovakia, have overestimation of crop yield. This is 
possibly caused by the higher management level assumed in the GEPIC model than that in 
these countries. 
Similarly, there exist no statistical data that indicates the CWP values for maize in raster 
format on a global scale. There are even no statistical data for national average CWP. Zwart 
and Bastiaanssen (2004) reviewed the measured CWP values for irrigated wheat, rice, cotton 
and maize at the global level by using 84 literature sources. This study, to our knowledge, is 
the most comprehensive study on the measured CWP of maize on the global scale. Zwart 
and Bastiaanssen (2004) listed the ranges and the means of CWP for 20 cities or regions. 
Among them, 15 locations can be precisely located as a point in a global map. The results 
show that 11 out of the 15 locations (or appropriately 73%) have simulated CWP values 
falling into the minimum-maximum CWP ranges (Figure 4). The simulated values from GEPIC 
are mostly in line with the measured values reported in Zwart and Bastiaanssen (2004). 
 
3.2. Crop yield and CWP with sufficient water and fertilizer supply 
In order to examine the effect of water availability and fertilizer application on yield and CWP, 
a simulation was performed using GEPIC with the assumption of sufficient water and fertilizer 
supply, holding other factors unchanged. The current crop yield and CWP and the potential 
yield and CWP are presented in Figure 5.   
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Figure 3. Comparison between simulated and 
statistical maize yield at national level 

 

Figure 4. Comparison between simulated and  
measured CWP 

 
 

 
Figure 5. National average yield and CWP in 2000 (solid dots) vs. potential national average 

yield and CWP (open dots). The arrows connect the current achieved values with the 
potentials for individual countries 

 
CWP can be increased in all the countries by increasing water and fertilizer supply. African 
countries show the most significant potential improvements in CWP. In Africa, the minimum 
potential national average CWP (i.e. 1.814 kg m-3 in Namibia) is higher than the currently 
achieved maximum national average CWP (i.e. 1.701 kg m-3 in Liberia). Statistically, about 
83%, 64%, 50%, 40%, 38% and 33% of the countries in Africa, North America, Oceania, 
Europe, South America and Asia respectively have the possibility to double their CWP by 
good management of water and fertilizer. 
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4. CONCLUSION 
The GEPIC model provides a practical tool for simulating crop yield and crop water 
productivity (CWP) by integrating the EPIC model with GIS. The integration facilitates the 
effective use of spatially distributed climatic, soil, land use, and irrigation data to estimate 
yield and CWP for each grid with a global coverage. The results show the GEPIC model can 
simulate global maize yield and CWP with acceptable accuracy. The global maps visually 
demonstrate the geographical variations of crop yield and CWP across regions. The national 
average yield and CWP can be used to analyze global, regional, national water-food 
relationship, and can provide useful information for global virtual water assessment, which 
should be elaborated on in future research. 
The potential yield and CWP can be improved in all the countries. This means that better 
water and fertilizer management can enhance both the food production and the crops 
produced per drop. Most African countries have the potentials in achieving high maize yield 
and CWP. The current low values are to a large extent due to the poor water management or 
the low fertilizer application. Efforts have to be strengthened in water and soil management 
should the malnutrition be reduced or even eliminated in the near future.  
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