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ABSTRACT 
A methodology for landslide susceptibility assessment to delineate landslide prone areas is 
presented using factor analysis and fuzzy membership functions and Geographic Information 
Systems (GIS). A landslide inventory of 51 landslides was created in the mountainous part of Xanthi 
prefecture (North Greece) and the associated conditioning factors were determined for each 
landslide by field work. Six conditioning factors were evaluated: slope angle, slope aspect, land use, 
geology, distance to faults and topographical elevation. Fuzzy membership functions were defined 
for each factor using the landslide frequency data. Factor analysis provided weights (i.e., importance 
for landslide occurrences) for each one of the above conditioning factors, indicating the most 
important factors as geology and slope angle. An overlay and index method was adopted to produce 
the landslide susceptibility map. In this map 96% of the observed landslides are located in very high 
and high susceptibility zones, indicating a suitable approach for landslide susceptibility mapping.     

KEYWORDS: landslide susceptibility, conditioning factors, factor analysis, fuzzy membership 
functions.  
 
 
1. INTRODUCTION 
Landslides cause adverse effects on human lives and economy worldwide. As the urbanization is 
rapidly growing, the evaluation of landslide susceptibility is perceived nowadays as the initial stage in 
mitigating landslide hazards. There is a growing interest worldwide in developing robust methods for 
landslide susceptibility and risk mapping, and hence provide planners with tools for selecting suitable 
areas for development.  
Traditionally, landslide susceptibility was determined using the physical laws that cause slope 
instability. As it is now well understood that landslides are a physical phenomenon that is controlled 
by various parameters, researchers have developed statistical methods for the estimation of 
landslide occurrence, examining various environmental factors such as topography, land uses, 
geology and hydrology. 
Guzzetti et al. (1999) indicated the four basic principles that all methods of landslide investigation 
are based on, according to which a territory can be zoned into hazard classes ranked according to 
different probabilities. 
Clerici et al. (2006) distinguished three distinct categories of methods for landslide susceptibility 
zonation: the deterministic (or engineering, or geotechnical), the heuristic (or index) and the 
statistical methods. The deterministic models rely upon the understanding of the physical laws 
controlling slope instability (Okimura and Kawatani, 1987; Dunne, 1991; Montgomery and Dietrich, 
1994; Dietrich et al., 1995; Terlien et al., 1995). These models couple shallow subsurface flow, i.e., 
the pore pressure spatial distribution, with predicted soil thickness in order to model the landsliding 
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of the soil mantle (Dietrich et al., 1995). Ercanoglou and Gokceoglou (2004) mention that 
deterministic approaches can be used for the small and relatively homogenous areas, and require 
detailed geotechnical and hydrogeological data and oversimplifications have to be made in order to 
apply such techniques in regional and medium scales. 
In the heuristic methods, the instability factors are ranked and weighted according to their assumed 
or expected importance in causing slope failures. As the ranking and weighting rules are based on 
the experience of geoscientists involved, this approach entails a substantial degree of subjectivity.  
The statistical methods are more objective and better suited for assessing landsliding probability, 
especially at medium scales. All the statistical methods, despite the methodological and operational 
differences, are based on the common assumption that slope failure in the future will be more likely 
to occur under those conditions which led to past and present instability (Clerici et al., 2006). Thus, 
the combination of parameters that have led to landslides in the past are determined statistically, 
and quantitative predictions are made for areas currently free of landslides but where similar 
conditions exist (Soeters and Van Westen, 1996). 
Much research is focused and published on the preparation of hazard maps based on statistical 
modeling (Chau et al., 2004) or on ranking and weighting environmental factors according to their 
assumed or expected importance in causing slope failures (Chung et al., 2002; Dai and Lee, 2002; 
Dai et al., 2002; Donati and Turrini, 2002; Zhou et al., 2002; Fernandez et al., 2003; Lee and Choi, 
2004, Ercanoglou et al., 2004). 
Recently, new techniques such as fuzzy logic and neural networks have also been successfully 
applied in various environmental problems (Gemitzi et al., 2006; 2007; 2008; Papadopoulos et al., 
2007). Some applications also include evaluation of landslide susceptibility (Ercanoglou and 
Gokceoglou, 2002; 2004; Lee et al., 2004; Kanungo et al., 2006, Caniani et al., 2008). The 
attractiveness of these techniques is that they investigate the nonlinearities and uncertainties of the 
considered system to solve the problem similarly to the human brain reasoning. The spatial data 
management and manipulation can be performed through Geographic Information Systems (GIS) 
(Dai and Lee, 2002; Sarkar and Kanungo, 2004; Chau et al., 2004; Clerici A., 2006).  
The present study combines heuristic methods, i.e., ranking and weighting environmental factors, 
with statistical methods, aiming at minimizing the subjectivity in the weight assignment process. The 
concept of membership value for landslide susceptibility is used, as introduced by Ercanoglou and 
Gokceoglou (2004). A problem, usually encountered in multivariate studies, is that each conditioning 
factor is expressed in a different way, i.e., some factors are expressed in linguistic form whereas 
some others are in numerical form; some are categorical data whereas some others are nominal 
data. Moreover, different ways are used for data collection, i.e., some factors were measured 
directly, whereas some others are derived information. In this context, the use of membership 
degree for factor quantification and standardization seems quite convenient. 
The methodology includes six steps: (1) the preparation of a landslide inventory of the study area 
based on field studies and data from previous works; (2) the identification of conditioning factors and 
the determination of their landslide frequencies; (3) the fuzzification of conditioning factors; (4) the 
application of multivariate statistical analysis (factor analysis) to determine the weights of the 
parameters; (5) the use of geographic information systems to produce the factor maps and the 
susceptibility map; and (6) the testing of reliability of the susceptibility map produced in a part of 
Hellenides, in Xanthi area (North Greece).  
 
2. STUDY AREA DESCRIPTION  
The methodology has been applied using data from shallow landslides of the mountainous part of 
Xanthi area (Thrace, Greece) (Figure 1). The study area covers approximately 850 km2 and it is 
bounded to the north from the Greek-Boulgarian border and extends to the south up to the Neogene 
Thrace basin.  
The geological and geomorphological characteristics of the area are described in previous works 
(Kilias et al., 1999; Dinter and Royden, 1993). The geological structure consists of rock formations 
attributed to the Paleozoic Rhodope massif that include the marble unit (marbles and schists) and 
the gneissic unit (migmatites, gneisses, marble-amphibolite intercalations and ultra mafic rocks), and 
to the Tertiary mollasic and igneous rocks (Figure 2). 
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Figure 1. Geographical setting and landslide inventory map of the study area.  

Examples of mapped landslides 
 

 
Figure 2. Geological map of the study area 

 
These rocks were reactivated during Tertiary times resulting to the uplifting of the area. From the 
field survey most of the landslides were identified in the weathering zone of migmatite rocks. The 
area has a mountainous character. The topographical elevation values vary between 30 and 1800 m 
and the dominant drainage pattern is dendritic. The general physiographic trend is NW-SE following 
the main drainage system. Two major rivers flow through the study area in a NW-SE direction, i.e., 
Kosinthos river and Komsatos river (Figure 1). In addition, there are many subsidiary intermittent 
streams forming a very dense hydrographic network. From a climatic point of view, this part of the 
Rhodope mountain chain receives a mean annual rainfall of about 930 mm, mainly concentrated 
during the winter (Ilias et al., 2000). Rainfall is observed mainly as sporadic storm events that trigger 
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landslides in the region. The study area is mainly covered by dense and sparse forest whereas 
smaller parts are utilized for agricultural and pasture and residential purposes.   

 
3. DATA USED AND PROCESSING OF CONDITIONING FACTORS 
For a landslide susceptibility assessment, several parameters introduced in a GIS, as spatial data 
layers are necessary to evaluate the zones susceptible to sliding. When applying any model to 
landslide susceptibility evaluation, it is very important to define criteria controlling the degrees of 
susceptibility. Although any parameter may be important with respect to the landslide occurrence in 
a region, the same parameter may not be important for another region. Hence, different parameters 
are used and ranked subjectively or objectively to produce a landslide susceptibility map (Ercanoglu 
and Gokceoglu, 2004) by various researchers, according to the study area.  
In the present study six conditioning factors were evaluated based on field work and on literature, 
i.e., slope angle, geology, distance to faults, topographical elevation, land use, slope aspect. A 
landslide inventory was created based on data collected by the present research work, as well as 
from previous studies (Ilias et al., 2000), thus 51 landslides were identified and the associated 
conditioning factors were determined for each landslide by field survey. During field work the 
dimensions of landslides were determined, which varied from 350 m2 to 15000 m2. The majority of 
landslides however have aerial extent of 600 m2 to 2500 m2. For each landslide the conditioning 
factors slope angle, topographical elevation (mean value of the highest and the lowest point of each 
landslide), slope aspect and land use were determined in the field. Moreover, using the 1:50,000 
geological map produced by the Greek Geological and Mineral Exploration Service (Ilias et al., 2000) 
as a base map, a 1: 25,000 geological map was prepared during the present research work, by field 
work. Major fault features were mapped at this scale and were incorporated in the associated layer. 
Most of the landslides are observed as falls, whereas some have a circular mode of failure (Figure 
1). 
All landslides were introduced as vector polygons in the GIS program Idrisi Andes and the 
associated layer was then rasterized using a pixel size of 20 m. Thus a total of 2063 pixels 
corresponding to landslides were produced, thus providing a sufficient number of points for statistical 
analysis to be performed. The pixel size of 20 m was determined based on the fact that the 
positional accuracy needed for 1:25,000 scale maps must be ±12.5 m (Akgun and Bulut, 2007). In 
order to produce the GIS layers for the conditioning factors slope angle and slope aspect, the Digital 
Elevation Model (DEM) of the study area was prepared, using again a pixel size of 20 m. All 
geological formations were introduced as vector polygons within GIS and were then rasterized with a 
pixel of 20 m, in order to produce the layer of the conditioning factor geology. Major faults were 
introduced as vector lines in the GIS and after delineating buffer zones around them, they were 
converted into a raster layer with the same pixel size, i.e., 20 m in order to enter the computational 
process. Land uses were digitized as vector polygons or vector lines (in cases of rivers and roads) 
and were converted to raster format with 20 m pixel size. All GIS computations were performed 
using the GIS program Idrisi Andes (Eastman, 2006) 
 
4. METHODS AND MATERIALS 
Fuzzy logic was introduced by Zadeh (1965) and its basic idea is to regard map objects as members 
of a set. Unlike the classical set theory, where an object belongs or not to a set  if it has a 
membership value of 1, or not 0 respectively, the fuzzy set theory, membership values may range 
between 0 and 1 reflecting the degree of certainty of membership.  
In order to express the degree of membership for a given property of interest, fuzzy set theory 
introduced the idea of a membership functions. Their choice and their associated values are critical 
aspects, while performing fuzzy logic analysis. There is no rule upon which fuzzy membership 
values are assigned. Some researchers simply use their subjective judgement as shown by 
Bonham-Carter (1994) for mineral exploration, while others are based on statistical analysis of their 
data (Ercanoglu and Gokceoglu, 2002). Fuzzy membership values can be derived by various 
functions representing the reality such as J-shaped, Sigmoidal, Linear and user defined function 
(Eastman, 2006). In the present case and in order to reflect reality while choosing fuzzy membership 
functions, they were selected based on the shape of the landslide frequency diagrams.  
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For each conditioning factor the landslide frequency diagram was created, i.e, a diagram showing 
the number of landslides observed in each of the various classes of every conditioning factor to the 
area occupied by each specified class. Subsequently, fuzzy membership functions were selected in 
order to quantify the conditioning factors to membership values of landslide susceptibility, ranging 
from 0 (low susceptibility) to 1 (high susceptibility). The shape and control points of the fuzzy 
membership function for each parameter were selected based on the landslide frequency diagrams. 
For this purpose the GIS program Idrisi Andes (Eastman, 2006) and its routine FUZZY was used. 
FUZZY evaluates the possibility that each pixel belongs to a fuzzy set by evaluating any of a series 
of fuzzy set membership functions. The software provides the possibility to use either Sigmoidal, J-
shaped or Linear functions, which are controlled by four points ordered from low to high on the 
measurement scale, or user-defined membership functions. The first point marks the location where 
the membership function begins to rise above 0. The second point indicates where it reaches 1. The 
third point indicates the location where the membership grade begins to drop again below 1, while 
the fourth point marks where it returns to 0. Points may be duplicated to create monotonic or 
symmetric functions. The user-defined function requires the input of control points and their 
corresponding fuzzy set memberships. These pairs serve to define the shape of the fuzzy set 
membership curve (Eastman, 2006). Output is scaled from 0-1. This closed interval [0, 1] provides 
standardization for each factor. In the present study, the shape of the frequency diagrams indicates 
that a sigmoidal function may be applied for the parameters slope angle and topographical elevation. 
For categorical parameters, such as land use, geology, distance to faults, as well as for slope 
aspect, user-defined membership functions were applied. The membership functions for each one of 
the individual parameters examined are shown in the respective Figures 3 – 8. 
In order to define importance weights for each one of the conditioning factors, several approaches 
have been developed. Akgun and Bulut (2007) employed both logistic regression and Analytical 
Hierarchy Process in order to define importance weights, whereas Ercanoglu and Gokceoglu (2002) 
used factor analysis. In our case, factor analysis was used to produce the importance weights of the 
conditioning factors. As it is neither based on experts opinions nor on subjective judgements, factor 
analysis is supposed to be very objective, among the several multivariate analysis methods. Using 
the membership values, a correlation matrix was obtained. Factor analysis extracts the eigenvalues 
and eigenvectors of the correlation matrix, resulting in the determination of importance weights for 
each individual factor. All statistical calculations were carried out using the GIS software Idrisi Andes 
(Eastman, 2006).   
 
5. RESULTS 
5.1 Conditioning factors 
Geology 
The parameter “Geology” is related to the resistance to landslides. The most landslide sensitive 
formations are considered to be those with a mollasic character, i.e., sandstone, siltstone, marl 
alterations, due to different degree of weathering. Limestones and quartzites are considered to be 
resistant to landsliding formations, although this is highly dependent on various aspects such as 
erosion degree and structural fabric, which may alter the initial character of a geological formation. 
As mentioned earlier, the study area consists of a marble unit and a gneissic unit (migmatites, 
gneisses, amphibolites and ultra mafic rocks) of Paleozoic age, and of Tertiary mollasic and igneous 
rocks (Figure 2). The mollasic sediments outcrop alterations of unweathered sandstone and solid 
conglomerate. The frequency diagram for geology (Figure 3) demonstrates that the majority of 
landslides occurred within the migmatite formation. A user-defined fuzzy membership function (µG) 
was applied with the following control points: gneisses were assigned a membership value of 0.3, 
the marble amphibolitic unit a value of 0.4, migmatites a value of 1, ultra mafic rocks were assigned 
a value of 0.2, Quaternary sediments a value of  0.16, and all other geological formations were 
assigned 0 (Figure 3). Thus the landslide susceptibility map based on geology was created (Figure 
3). 
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Figure 3. Derivation of the landslide susceptibility map based on geology 

 
Distance to faults 
Faults are the structural features which describe a zone of weakness with relative movement, along 
which landslide susceptibility is higher. It has generally been observed that the probability of 
landslide occurrence increases at sites close to faults, which not only affect the surface material 
structures but also make contribution to terrain permeability causing slope instability (Kanungo et al., 
2006). The major fault features in the study area were mapped based on field work. During field 
survey, fault length, aspect, dip angle and type (normal, reverse, strike slip) were determined. Buffer 
zones of 250 m were generated around those features and the associated landslide frequencies 
were determined for the areas inside and outside those buffer zones (Figure 4). The frequency 
diagram indicated no significant difference between those two distinctive areas. A user-defined fuzzy 
membership function (µF) was applied with the following control points: 0.78 for the areas outside the 
250m fault buffer zones and 1 for the areas inside the 250m fault buffer zones (Figure 4). Thus the 
landslide susceptibility map based on distance to faults was created (Figure 4). 
 

 
Figure 4. Derivation of the landslide susceptibility map based on distance to faults 

 
Slope angle 
For the “Slope angle” parameter, a symmetric sigmoidal fuzzy membership function (µs) was used 
with inflection points at 0º (membership function begins to rise above 0), 30º (membership function 
reaches 1), 40º (membership grade begins to drop below 1) and 70º (membership function returns to 
0) (Figure 5).  
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Figure 5. Derivation of landslide susceptibility map based on slope of the topography 

 
As the frequency diagram for this specified factor indicates, when slopes exceed 50º, a sharp 
decrease in the landslide frequency values was observed, which has been determined by other 
researchers as well (Ercanoglu  and Gokceoglu, 2002). 
 
Topographical elevation 
The frequency diagram for the parameter topographical elevation (Figure 6) indicates that it may be 
fuzzified using a symmetric membership function (µΑ) (Fig. 6) with inflection points at 200 m 
(membership function begins to rise above 0), 300 m (membership function reaches 1), 700 m 
(membership grade begins to drop below 1) and 900 m (membership function returns to 0). The 
frequency diagram for this factor (Fig. 6) shows that there is good agreement between landslide 
frequency and topographical elevations of 200–900 m, whereas for elevations above 900 m the 
landslide frequency diminishes. In contrast to what is mentioned by Pachauri and Pant (1992), that 
the higher relief shows a greater susceptibility to sliding, Ercanoglu and Gokceoglu (2002) found a 
good agreement between landslide frequency and topographical elevations of 100–500 m, which is 
closer to the findings of the present study. 

 
Figure 6. Derivation of landslide susceptibility map based on altitude 

 
Slope aspect 
Slope aspect (Figure 7) measures the direction that each grid cell faces in three-dimensional space 
and is recorded in azimuth degrees relative to true north. It is related to the general physiographic 
trend of the area and/or the main precipitation direction. 
Although the relationship between landslide occurrence and slope aspect is still under investigation, 
some researchers (Carrara et al., 1991; Gokceoglu and Aksoy, 1996) introduce slope aspect in their 
computations, whereas others do not (Uromeihy and Mahdafivar, 2000). Ercanoglu and Gokceoglu 
(2002) found in their study area that the relationship between the dip direction of movement 
identified in the area and the general physiographic trend of the area were roughly perpendicular. In 
the present study, however, and as the frequency diagram for slope aspect indicates, no such 
relationship can be extracted. For this parameter a user defined fuzzy membership function (µSA) 
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(Figure 7) was applied with appropriate control points to match the frequency diagram, whereas 
maximum membership, i.e. 1, was assigned to aspect values between 150° and 180°, and minimum 
membership, i.e. 0, was assigned to aspect values between 210° and 240°. 

 

 
Figure 7. Derivation of landslide susceptibility map based on slope aspect 

 
Land use 
Land use (Figure 8) is the factor related to the effects caused by human activities on landslide 
occurrence. The study area is covered mainly by dense and sparse forests. To a lower extent 
grasslands and residential areas (mainly in the form of small settlements) occupy the study area. 
Moreover, zones of 20 m around roads and rivers were delineated and incorporated in the land use 
layer, which correspond to the adjacent to those features pixels, which are the ones that might have 
been influenced by the presence of rivers or the construction of roads. The frequency analysis 
(Figure 8) showed an indisputable negative effect of road construction on slope instability. A user 
defined fuzzy membership function (µLU) (Figure 8) was applied this time as well, with the following 
control points: dense forest was assigned a membership value of 0.20, sparse forest a value of 0.36, 
grassland a value of 0.27, residential areas a value of 0.37, roads a value of 1 (complete 
membership), 0 for water bodies (merely corresponding to the bodies of perennial rivers) and a 
value of 0.25 for river buffer zones. 

 

 
Figure 8. Derivation of landslide susceptibility map based on land uses 
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5.2 Factor analysis 
According to the results of factor analysis (Table 1), the importance weight for geology is the highest, 
and corresponds to 24.2% of the input variance. Slope angle is the second most important 
parameter, corresponding to 17.9% of the input variance. Furthermore, land use, distance to faults, 
elevation of the topography, and slope aspect are the third, fourth and fifth important parameters 
corresponding to 16.7%, 16.4%, 12.9% and 11.9% respectively, of the input variance. Thus, the 
membership function for landslide susceptibility was determined as: 
(µLS) = (0.242 × µG) + (0.179 × µS ) + (0.167 × µLU)+(0.164 × µF) + (0.129 × µA)++(0.11× µSA)        (1) 
 

Table 1. Factor analysis results 
COMPONENT C 1 C 2 C 3 C 4 C 5 C 6 
% VARIANCE 24.18 17.95 16.69 16.39 12.87 11.92 

LOADING C 1 C 2 C 3 C 4 C 5 C 6 
Distance to faults 0.082 -0.366 0.613 0.684 0.123 -0.009 

Geology -0.641 0.445 0.078 0.148 0.183 -0.574 
Land use 0.561 0.501 0.701 -0.108 -0.101 0.127 
Elevation -0.639 0.431 0.187 0.133 0.608 0.071 
Aspect 0.164 0.161 0.193 0.667 0.073 0.586 
Slope -0.533 -0.531 -0.236 -0.139 0.582 0.143 

 
To obtain the landslide susceptibility map, the technique of overlaying of index maps was used. 
When overlaying the index maps, Equation (1) was used and the landslide susceptibility map was 
obtained for the study area (Figure 9a) with index values ranging from 0 (non-susceptible areas) to 1 
(very high susceptibility to landsliding). After obtaining the landslide susceptibility map, the need to 
divide it into susceptibility classes appeared. In order to objectively select class boundaries, the 
method of success rate curves as defined by Kanungo et al.(2006), was adopted. The method is 
based on the determination of the mean (µο) and standard deviation (σo) from the probability 
distribution curve of the landslide susceptibility map values. The mean value was defined to be 
0.393, whereas the standard deviation value was 0.202. Thus, the boundaries for each one of the 
five susceptibility classes were defined as follows:   (µo−1.5 mσo), (µo−0.5 mσo), (µo+0.5 mσo) and 
(µo+1.5 mσo) where m is a positive, non-zero value (Saha et al., 2005; Kanungo et al., 2006) which 
controls in fixing the most appropriate boundaries within the range of values of the landslide 
susceptibility map, for landslide susceptibility classes. In that way, the classes are defined 
statistically, without the need of subjectively dividing the map into classes, as it is always done in the 
conventional procedure. Five values of m, i.e., m = 0.8, 1.0, 1.1, 1.2 and 1.4 were used and the 
associated landslide susceptibility zones were defined. The corresponding landslide susceptibility 
maps were prepared and success rate curves (Kanungo et al., 2006) were plotted for each one 
(Figure 9b). Those curves are plots of the cumulative percentage of landslide occurrences in various 
susceptibility zones ordered from very high susceptibility to very low susceptibility against the 
cumulative percentage of area of the susceptibility zones for these landslide susceptibility zone 
maps. Success rate curve was also plotted for the equal interval method of landslide susceptibility 
zoning. According to Kanungo et al. (2006), the suitability of each of those maps can be judged by 
the fact that more percentage of landslides must occur in very high susceptibility zone as compared 
to other zones. It can be seen from Figure 9b that for 10% of the area in the very high susceptibility 
zone, the curves corresponding to m = 0.8, 1.0, 1.1, 1.2 and 1.4 show landslide occurrences of 32%, 
31%, 30%, 28%, and 17% respectively. The equal interval curve show landslide occurrence of 20%, 
for the 10% of the area in the very high susceptibility zone, Thus, the curve corresponding to m=0.8 
has the highest success rate and the associated landslide susceptibility map seems to be the most 
appropriate one for the study area. The results are also shown in tabular form in Table 2. 
In order to validate the present methodology and control the performance of the produced 
susceptibility map, a comparison between the landslide susceptibility class zones on the map and 
the number of landslides observed in each class was carried out (Table 2), as it is usually done in 
related studies (Ercanoglu and Gokceoglu, 2002; Kanungo et al., 2006). Forty five landslides, i.e., 
92% of the landslides, were observed in the very high zone, 3 landslides were observed in the high 
susceptibility zone and only 1 was located in the zone of moderate susceptibility. This high accuracy 
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percentage indicates that the presented herein methodology offers a reliable approach for landslide 
susceptibility mapping.  

 
Figure 9. a) Landslide susceptibility map, b) Success rate curves 

 
Table 2. Landslide susceptibility results 

Susceptibility Class Index value Landslides 
observed 

% of the study area 

Non-susceptible 0 - 0.1506 0 3 
Low susceptibility 0.1506 - 0.3122 0 45 

Moderate susceptibility 0.3122- 0.4738 1 15 
High susceptibility 0.4738 - 0.6354 3 8 

Very high susceptibility 0.6354 - 1 47 29 
 
6. DISCUSSION AND CONCLUSION 
Landslide susceptibility was assessed by examining various environmental factors using fuzzy 
membership functions and factor analysis. For this purpose, data obtained from previous surveys 
were combined with those obtained by field work carried out within the scope of present study. As a 
result, a landslide inventory was created for the study area, which comprised 51 landslides. Then, 
conditioning parameters were determined and for each parameter a landslide frequency diagram 
was created. Based on these frequency diagrams, fuzzy membership functions were determined, 
each parameter was fuzzified, and landslide susceptibility maps were constructed for each individual 
parameter. In order to determine the importance weight of each conditioning factor, factor analysis 
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was applied in the form of the correlation matrix. Accordingly, the fuzzified index maps were 
aggregated in order to produce the final landslide susceptibility map for the northern Xanthi area.  
According to the produced results, the landslides in the study area are merely controlled by geology, 
which is in agreement with the findings of other researchers elsewhere (Kamp et al., 2008). In 
contrast to the general belief that mollasic type formations favour landslide occurrences, the present 
work shows that in the study area the majority of landslides occurred within migmatite formations, 
whereas only a negligible percentage of landslides occurred within the molassic sediments. This 
indicates that although the type of geological formation might be an important conditioning factor, the 
degree of weathering and the structural fabric of each formation are responsible for its behaviour to 
landsliding.  
The second most important parameter is slope. The observation that demonstrated a decrease of 
landslide frequency for slopes greater than 50º seems quite peculiar. The same, however, is 
observed by other researchers such as Ercanoglu and Gokceoglu (2002). They attributed this 
observation to the fact that the steep slopes, in their area, are generally formed by hard limestones 
and quartzites, which are resistant to landsliding.  In order to extract safe conclusions, however, 
those observations should be combined with geological data, especially with data related to dip 
angles of the geological strata.  
Land use is the third most important factor determined by factor analysis, indicating the influence of 
human activities in the landslide occurrence. The majority of landslides in the study area occurred on 
road sides or in residential areas, indicating thus that they might have been prevented if proper 
design and construction methods were employed. 
The fourth most important parameter was determined to be distance to faults. In the frequency 
analysis no major difference was observed between those areas within 250 m from major fault 
structures and those outside. This might be attributed the fact that there is no dense fault pattern to 
control the landsliding in the scale of mapping.    
The fifth determined parameter is topographical elevation, with an importance weight of 12.5%. 
Actually, those results are in agreement with the findings of Ercanoglu and Gokceoglu (2002), where 
they determined an importance weight for that factor of 12.5%. In the present study there is good 
agreement between landslide frequency and topographical elevations of 200–900 m, whereas for 
elevations above 900 m the landslide frequency diminishes. Ercanoglu and Gokceoglu (2002) found 
a good agreement between landslide frequency and topographical elevations of 100–500 m. The 
general observation, however that landslide frequency diminishes above a certain altitude, is the 
same in both cases.  
No dominant physiographic direction was found to favour landslides, in contrast to what was 
previously mentioned by other researchers. In fact, factor analysis determined the least importance 
weight i.e., 11.9% for slope aspect.  
The methodology demonstrated a success rate of 92%, i.e., 45 out of 51 landslides, were observed 
in the very high susceptibility zone and therefore it is a reliable approach for landslide susceptibility 
mapping, providing a mathematical basis for expressing each conditioning factor, and combining 
numerical and categorical data in the computational procedure.  
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