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ABSTRACT 
In this study, the Bayesian approach is proposed to estimate the noise variances of Kalman 
filter based statistical models for predicting the daily averaged PM10 concentrations of a typical 
coastal city, Macau, with Latitude 22°10’N and Longitude 113°34’E. By using the 
measurements in 2001 and 2002, the Bayesian approach is capable to estimate the most 
probable values of the noise variances in the Kalman filter based prediction models. It turns 
out that the estimated process noise variance of the time-varying autoregressive model with 
exogenous inputs, TVAREX, is significantly (~76%) less than that of the time-varying 
autoregressive model of order 1, TVAR(1), since the TVAREX model incorporates important 
mechanisms which govern the daily averaged PM10 concentrations in Macau. By further using 
data between 2003 and 2005, the choice of the noise variances is shown to affect the model 
performance, measured by the root-mean-squared error, of the TVAR(p) model and the 
TVAREX model. In addition, the optimal estimates of noise variances obtained by Bayesian 
approach for both models are located in the region where the model performance is 
insensitive to the choice of noise variances. Furthermore, the Bayesian approach will be 
demonstrated to provide more reasonable estimates of noise variances compared to the 
noise variances found by simply minimizing the root-mean-squared prediction error of the 
model. By comparing the optimized TVAREX model and the TVAR(p) models in predicting the 
daily averaged PM10 concentrations between 2003 and 2005, it is found that the TVAREX 
model outperforms the TVAR(p) models in terms of the general performance and the episode 
capturing capability. 
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1.  INTRODUCTION 
Kalman filter (Kalman and Bucy, 1961) is a popular tool in the discipline of environmental 
science for predicting and filtering random signals. In addition, it can be used to update the 
uncertain parameters of environmental models once new measurements are obtained. 
Examples of application include air quality prediction (Hoi et al., 2008; Hoi et al., 2009), 
analysis of trace gas concentrations in ice core air bubbles (Trudinger et al., 2002), estimation 
of nitrate reductase enzyme parameters in activated sludge (Hamilton et al., 2008), parameter 
estimation for leaky aquifers (Yeh and Huang, 2005) and sea level forecasting (Choi et al., 
2002), etc. However, Kalman filter is usually applied with some prior assumption on the 
variances of the process noise and the measurement noise, which are difficult to be obtained 
in practice. Nevertheless, the choice of these values was shown to affect the performance of 
Kalman filter (Yuen et al., 2007; Trudinger et al., 2008). The objective of the present study is 
to apply the Bayesian approach to estimate the noise variances in order to optimize the 
performance of the predictive system. Bayesian approach is a probabilistic approach which 
allows one to obtain the most probable estimates of the unknown parameters of a system and 
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to quantify the associated uncertainties based on given data (Beck and Katafygiotis, 1998; 
Yuen 2010). 
In order to demonstrate the proposed method, the Kalman filter will be implemented on two 
types of time-varying statistical air quality models. The first type is the time-varying 
autoregressive model, which is abbreviated as the TVAR model. The model performs the one-
step-ahead prediction of the pollutant concentration by a linear combination of the 
concentrations of the previous steps. The unknown coefficients in this model are time-varying 
and to be traced by Kalman filter. The second statistical model type is called the time-varying 
autoregressive model with exogenous input, which is abbreviated as the TVAREX model. The 
TVAREX model is a combination of the time-varying autoregressive model and the 
exogenous inputs that depend on some selected meteorological properties on the day of 
prediction. The Bayesian approach will then be applied to both time-varying models to 
estimate the noise variances and a case study was provided in this paper as a reference. In 
the following section, the formulation of the Kalman filter based time-varying models is briefly 
described. 
 
2. KALMAN FILTER BASED AIR QUALITY PREDICTION MODELS 
2.1. TVAR(p) model 
In this section, the Kalman filter is formulated for the time-varying autoregressive model of 
order p, which is abbreviated as the TVAR(p) model: 

11,11,1 −−−−− +++= kpkkpkkk fxxx φφ "  (1)
where xk denotes the daily averaged air pollutant concentration of the kth day. The input f 
represents the unmodeled dynamics, and it is modeled as a Gaussian independent and 
identically distributed (i.i.d.) process with zero mean and variance σf

2. It represents the 
neglected factors that influence the pollutant concentration. In addition, it is assumed that the 
measurement of the pollutant concentration, denoted as zk, is contaminated during the 
measurement process. The relationship between zk and xk is given by zk=xk+nk, where n is 
the measurement noise and it is also modeled as Gaussian i.i.d. with zero mean and variance 
σn

2. Furthermore, the stochastic process f and n are assumed to be independent. The 
TVAR(p) model simply implies that the pollutant concentration of a day is a weighted sum of 
its concentrations of the previous p days with the weights being the time-varying 
coefficients φi. These unknown coefficients evolve according to the 
equation 1,1,, −− += kikiki wφφ , where wi,k-1 denotes the variation made to the coefficient φi,,k-1 at 
the (k-1)th time step. The stochastic process w is modeled as Gaussian i.i.d. with zero mean 
and covariance matrix ( )22

2
2
1 ,,, wpwwdiag σσσ … . Now we define the state vector which 

contains the pollutant concentrations of different days and the unknown coefficients to be 
estimated: 

[ ]Tkpkpkkk xx ,,11 ,,,,, φφ …… +−=Y  (2)

Then, the measurement zk can be expressed in terms of Yk in the form kkk nz += CY , where 
C is a row vector given by C = [1, 01×(2p-1)]. Also, a process noise vector which contains the 
process noises fk and wi,k, i=1,…, p is defined as follows: 

[ ]Tkpkkk wwf ,,1 ,,, …=F  (3)
It is readily followed that Fk has zero mean and covariance matrix 

( )22
2

2
1

2 ,,,, wpwwfdiag σσσσ …=Q . Then, the TVAR(p) model is linearized locally to a first order 
TVAR vector model: 

1|1111|1
ˆˆ

−−−−−− ++= kkkkkkk GBFYAY  (4)
The matrix Âk-1|k-1 denotes the filtering estimator of the matrix A at the (k-1)th time step, 
conditional on the measurements z1,z2,…,zk-1. The same notation is applied to other 
estimators conditional on the given measurements. The matrices Âk-1|k-1 and B are given by: 
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where 1|1,
ˆ

−− kkiφ  and 1|1ˆ −− kkx  denote the filtering estimator of the i th AR coefficient and the 
pollutant concentration at the (k-1)th time step, conditional on the measurements z1,z2,…,zk-1. 
It is noted that B is constant for any time step. The vector Ĝk-1|k-1 is used to compensate the 
linearization error: 

( ) ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −−−
=

×−

−−−−−−−−
−−

112

1|1|1,1|11|1,1
1|1

ˆˆˆˆ
ˆ

p

kpkkkpkkkk
kk

xx
0

G
φφ "

 (7)

With this TVAR vector model, one can perform the predicting and filtering steps of the 
pollutant concentrations by the Kalman filter. The essential steps of the Kalman filter are to 
predict and filter the measured concentration alternatingly. When the measured 
concentrations up to the (k-1)th day are available, the predicting procedure is applied to give 
the one-step-ahead prediction of the pollutant concentration. The predicting state vector on 
the kth day can be estimated from the filtered state vector on the (k-1)th day: 
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In addition, the uncertainty of the air quality prediction and the estimated model parameters 
can be quantified by the covariance matrix: 

TT
kkkkkkkk BQBAPAP += −−−−−−− 1|11|11|11|

ˆˆ  (9)
When the measurement on the kth day is available, the pollutant concentration and the model 
parameters are updated as follows: 

( )k
T

nkkkkkkkk zCYPPY 2
1|

1
1|||

ˆˆ −
−

−
− += σ  (10) 

The uncertainty of the state estimation is represented by its covariance matrix: 

T
kk

kxn
kkkk vvPP 2

,
21||

1
σσ +

−= −  (11) 

where vk and 2
,kxσ are the first column vector and the (1,1) component of the one-step-ahead 

prediction covariance matrix 1| −kkP , respectively. 
 
2.2. TVAREX model 
The TVAREX model is a time-varying autoregressive model with exogenous inputs:  

( )[ ] ( ) kkkkkkkkkkk fruxxx +−−−+′+= −−−−−− 1,41,311,211,1 expexp φθβαφφφ  (12) 
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It is a statistical model particularly formed according to the nature of a typical coastal city, 
Macau. However, it is believed that this model is applicable to other coastal cities with slight 
modification of the model inputs as they are also influenced by similar physical mechanisms. 
In this model the symbols 1−kx  and 1−′kx  denote the daily averaged pollutant concentration of 
yesterday and the hourly averaged pollutant concentration before midnight, respectively. It is 
used to reflect the initial condition of the pollutant concentration on the next day. In addition, 
the symbols uk and kθ  denote the magnitude and the absolute angle of the resultant wind 
velocity vector. The resultant wind velocity vector is obtained by the sum of the hourly wind 
velocity vectors on the day of prediction. The magnitude uk is associated with the dispersion 
condition of the kth day. The absolute angle of the resultant wind velocity vector kθ  
represents the dominant wind direction on the day of prediction. For example, the 0° refers to 
the Geographic True North and an absolute angle of 30° denotes the angle of +/- 30° from it. 
Therefore, the entire range of the wind direction is [0°,180°]. The absolute resultant angle 
indicates the type of the replenishing air masses being transported to the modeled area. In 
this study the values of α and β are fixed and those values are specified through the 
optimization procedure. Assuming fixed values of α and β ensures that there is unique most 
plausible value for each time-varying coefficient on a given day. In this study, the values of α 
and β are taken to be 2928.8 hr km-1 and 297 deg-1, respectively. The exponential term 
containing the daily rainfall index rk, which is defined as the product of the daily rainfall 
amount and the duration of rainfall on the kth day, is used as a discounting factor on the 
pollutant concentration for a rainy day. Finally, the term f represents the modeling error and it 
is modeled as Gaussian i.i.d. with zero mean and variance σf

2. By applying similar procedures 
shown in the section 2.1, the Kalman filter can be implemented on the TVAREX model.  
 
3. BAYESIAN INFERENCE FOR THE NOISE PARAMETERS 
As mentioned above, Kalman filter is usually applied with some prior assumption on the 
variances of the process noise σf

2 and the measurement noise σn
2, which are difficult to be 

obtained in practice. The choice of these values was shown to affect the performance of 
Kalman filter (Yuen et al., 2007; Trudinger et al., 2008). In this study, the Bayesian approach 
is proposed here to identify these uncertain parameters. Bayesian approach is a probabilistic 
approach which allows one to obtain the most probable estimates of the unknown parameters 
of a model and to quantify the associated uncertainties based on given data (Beck and 
Katafygiotis, 1998; Yan et al., 2009; Yuen and Mu, 2009; Yuen, 2010). First, we define the 
uncertain parameter vector which contains the process noise and the measurement noise 
variances: 

[ ]Tnf
22 ,σσ=θ  (13) 

By using the Bayes’ theorem and given the measurement of the pollutant concentrations 
D={z1,...,zN}, the posterior probability density function of the uncertain parameters is given by: 

( ) ( ) ( )θθDDθ ppcp || 0=  (14) 
where 0c  is a normalizing constant such that the volume of the right side over the parametric 

space Θ is unity; and ( )θD |p  is the likelihood function that represents the level of data fitting. 
( )θp  is the prior distribution of the uncertain parameters and it reflects the prior knowledge of 

the user on the uncertain parameters. As a result, the optimal estimate of the parameter 
vector θ̂  is obtained by maximizing the posterior probability density function p(θ|D): 

( ) ( ) ( )θθDDθθ
θθ

ppp |maxarg|maxargˆ
Θ∈Θ∈

==  (15) 

In this study, a noninformative prior is chosen so it is equivalent to use the maximum 
likelihood criterion for choosing the optimal parameter vector. The likelihood function can be 
expressed as the product of the PDFs of the measured concentration zk conditional on the 
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parameter vector θ and all previous measurements z1,…,zk-1, (Yuen and Katafygiotis, 2001; 
Yuen et al., 2002): 

( ) ( )∏
=

−=
N

k
kk zzzpp

2
11 ,,,|| θθD …  (16) 

The measured concentration zk conditional on all previous measurements and the parameter 
vector is normally distributed 
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Although the process noise variance does not explicitly appear in the expression, its influence 
on the likelihood function can be reflected through the variance 2

,kxσ . For a noninformative 
prior distribution, the optimal parameter vector is found by minimizing the objective function 

( ) ( )θDθ |ln pJ −=  over the search space: 
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Furthermore, the uncertainty of the estimation can be quantified by using the posterior PDF, 
e.g., to calculate the standard deviation or the contours with equal probability density.  
 
4. CASE STUDY 
The Kalman filter based air quality prediction models are tested in a typical coastal city, 
Macau, with Latitude 22°10’N and Longitude 113°34’E. The data consists of daily averaged 
concentrations of the adverse air pollutant, PM10 (Konovalov et al., 2009; Politis et al., 2008; 
Shan et al., 2009) and the meteorological conditions including the wind speed, the wind 
direction, and the amount of precipitation recorded at an ambient air quality monitoring station 
between 2001 and 2005. The station has an altitude of 158.2 m, so its air quality and 
meteorological measurements are considered to be representative of the general background 
conditions for the whole city. Figure 1a shows the time series of the measured daily averaged 
PM10 concentrations. It is noted that the time series has a distinct seasonal pattern which is 
related to the seasonal variation of wind conditions in Macau (Mok and Hoi, 2005). Figure 1b 
shows the histogram of the measured PM10 concentrations. It is noted that the histogram is 
unimodal and positively skewed with the mean concentration of 59.08 µg m-3 and the 
standard deviation of 39.70 µg m-3.  
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Figure 1. (a) Time-series and (b) histogram of measured daily averaged PM10 concentrations 
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Figure 2a shows the posterior PDF of the noise variances conditional on the data between 
2001 and 2002 using the TVAR(1) model. It is noted that the posterior PDF is a unimodal 
distribution. Figure 2b shows the associated contour plot of the posterior PDF. The optimal 
estimate of the parameter vector for the TVAR(1) model is (250 µg2 m-6,200 µg2 m-6). The 
uncertainty of the optimal estimate is represented by the contours with equal probability 
density. Figure 3 shows the optimal estimates of the parameter vector for different model 
order of the TVAR(p) models from 1 to 10 and the best-fit straight line across the optimal 
estimates. It is noted that the estimated process noise variance is generally increased, while 
the estimated measurement noise variance is decreased when p is increased from 1 to 3.  
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Figure 2. (a) Posterior PDF and (b) contour plot of noise variances for TVAR(1) model  
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Figure 3. Optimal estimates of the parameter vector for the TVAR(p) model 

 
Only small variation in the optimal estimates of the parameter vector is observed when p is 
larger than 3. A higher-order TVAR model tends to have smaller optimal estimate of 
measurement noise variance since it has more adjustable parameters and hence higher 
capability to fit the data. Therefore, the fitting error is reduced and smaller optimal estimate of 
measurement noise variance is obtained. However, the higher-order models may have 
unnecessarily too many uncertain parameters and overfit the data. Therefore, the process 
noise of the model is correspondingly increased. Judging from the estimated process noise 
variance, the TVAR(p) model with lower model order is comparatively more representative of 
the air quality system. To further reinforce the observed trend, the Akaike information criterion 
(AIC) (Akaike, 1976; Abdel-Aziz and Frey, 2003; Monson, 2009; Peng et al., 2006) was 
adopted to perform model class selection of the TVAR(p) models. The AIC derived for the 
time-varying models is shown below: 
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where the symbols kkx |ˆ  and 2
,kxς represent the filtered daily averaged PM10 concentration and 

its variance on the kth day, and Nφ denotes the number of uncertain parameters in the model. 
The first two terms in the expression represent the goodness of fit, while the last term 
penalizes the model with more uncertain parameters. In general, a more efficient and robust 
model tends to have lower value of AIC. Figure 4 shows the natural logarithm of AIC for the 
TVAR(p) models with different model orders from 1 to 10. It is noted that a general increasing 
trend of ln(AIC) is observed when p is increased from 1 to 10. According to the Akaike 
information criterion, the most parsimonious model TVAR(1) should be chosen among those 
10 possible candidates and the increasing trend further supports the aforementioned 
judgement. Figures 5a and 5b shows the posterior PDF and the contour plot for the noise 
variances of the TVAREX model. The optimal estimate of the parameter vector for the 
TVAREX model is (60 µg2 m-6,220 µg2 m-6). The process noise variance of the TVAREX 
model is significantly (~76%) less than that of the TVAR(1) model since the exogenous inputs 
of the TVAREX model reflect the influencing physics controlling the variation of PM10 
concentration in Macau. Therefore, the model class becomes more representative and this 
causes the process noise to be reduced. 
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Figure 4. Natural logarithm of AIC for the TVAR(p) models 
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Figure 5. (a) Posterior PDF and (b) contour plot of noise variances for TVAREX model  
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The TVAR(1) model and the TVAREX model are evaluated by using the data between 2003 
and 2005. Figure 6a shows the root-mean-square error (RMSE) of the TVAR(1) model 
associated with different combinations of the process noise and the measurement noise 
variance. It is noted that the performance of the TVAR(1) model is more sensitive to the 
choice of the process noise variance than the choice of the measurement noise variance as 
the RMSE of the model increases rapidly for small values of process noise variance. This 
illustrates that the selection of noise parameters for Kalman filter is important. Figure 6b 
shows the corresponding contour plot of the RMSE. The optimal point 1 (+) represents the 
optimal estimates of the noise variances corresponding to the minimum RMSE, whereas the 
optimal point 2 (.) represents the optimal estimates of the noise variances by the Bayesian 
approach. It is noted that both points are located at the region where the model performance 
is insensitive to the choice of noise variances. The RMSE of the TVAR(1) model evaluated at 
the optimal noise variances by Bayesian approach is approximately 0.54% higher than the 
minimum RMSE. Although the RMSE evaluated at the optimal noise variances by Bayesian 
approach is slightly higher than the minimum RMSE, the standard deviation of the process 
noise corresponding to the minimum RMSE is about 86.90% of the root mean square of the 
daily averaged PM10 concentrations. This value is unreasonably high since it implies that the 
fluctuation of the daily averaged PM10 concentrations is mostly contributed by the process 
noise. 
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Figure 6. (a) RMSE and (b) contour plot for the TVAR(1) model with different assumptions of 

process noise and measurement noise variances  
 
Figure 7a shows the root-mean-square error (RMSE) of the TVAREX model for different 
process noise and measurement noise variances. It is noted that the performance of the 
TVAREX model is not sensitive to the choices of noise variances except at the region with 
small process noise and measurement noise variance. Figure 7b shows the corresponding 
contour plot. The optimal point 1 (+) represents the optimal estimates of the noise variances 
corresponding to the minimum RMSE, whereas the optimal point 2 (.) represents the optimal 
estimates of the noise variances by the Bayesian approach. Both are located at the region 
where the model performance is not sensitive to the choice of noise variances. It is surprising 
that the optimal process noise variance which associates with the minimum RMSE of the 
TVAREX model is the same as that of the TVAR(1) model. As mentioned earlier, the TVAREX 
model is more representative than the TVAR(p) model since the TVAREX model includes the 
meteorological conditions which reflect the influencing physics controlling the variation of 
PM10 concentrations in Macau. Therefore, the process noise of the TVAREX model is 
expected to be smaller than that of the TVAR(p) model. However, the process noise variance 
corresponding to the minimum RMSE is unreasonable and the optimal estimates of the noise 
variances by the Bayesian approach is more reliable even though its RMSE is slightly 
(~2.74%) higher than the minimum RMSE. The evidence illustrates the reliability of the 
Bayesian approach. Previously, the TVAR(1) model and the TVAREX model were compared 
from the perspectives of the noise variances. Now, both models are further evaluated by 
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comparing the general performance and their abilities to capture the pollution episodes. The 
optimal estimates of the noise variances were assumed for both models. 
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Figure 7. (a) RMSE and (b) contour plot for the TVAREX model with different assumptions of 

process noise and measurement noise variances  
 

Figure 8 shows the time series of measured daily averaged PM10 concentrations and the 
predictions by the TVAR(1) model between 2003 and 2005, respectively. The solid line 
represents the measurements whereas the dashed line represents the predictions. It is noted 
 

01/01/03 01/02/03 01/03/03 01/04/03 01/05/03 01/06/03 01/07/03 01/08/03 01/09/03 01/10/03 01/11/03 01/12/03 01/01/04
0

50

100

150

200

250

D
ai

ly
 [

PM
10

] 
(µ

g 
m

−
3 )

 

 

01/01/04 01/02/04 01/03/04 01/04/04 01/05/04 01/06/04 01/07/04 01/08/04 01/09/04 01/10/04 01/11/04 01/12/04 01/01/05
0

50

100

150

200

250

D
ai

ly
 [

PM
10

] 
(µ

g 
m

−
3 )

01/01/05 01/02/05 01/03/05 01/04/05 01/05/05 01/06/05 01/07/05 01/08/05 01/09/05 01/10/05 01/11/05 01/12/05 01/01/06
0

50

100

150

200

250

D
ai

ly
 [

PM
10

] 
(µ

g 
m

−
3 )

Measured [PM
10

]

Predicted [PM
10

]

 
Figure 8. Measured daily averaged PM10 concentrations and predictions by TVAR(1) model 

between 2003 and 2005 
 
that there is a time-delay problem associated with the TVAR(1) model, i.e., the trend of the 
predictions generally lags behind the trend of the measurements. The problem appears since 
the prediction is based solely on its own past history. Those influencing factors such as the 
dispersion condition on the day of prediction and the nature of replenishing air masses which 
can be continental or oceanic are treated as the unknown inputs. Therefore, the process 
noise is large with respect to the RMS of the signal and this causes the predicted signal to be 
delayed. Figure 9 shows the scatterplot of the TVAR(1) predicted daily averaged PM10 
concentration against its measurement. A 45° straight line is also drawn on the figure for 
reference. A point falling on the 45° line implies a perfect match between the measured and 
predicted PM10 concentration. It is noted that a large portion of the points are lying close to 
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the 45° line, indicating that the model results are acceptable. However, some of the points are 
located far away from the line. As mentioned above, the predictions generally lag behind the 
measurements. Large prediction error is expected when there is large variation in the daily 
averaged PM10 concentrations. Therefore, those points lying far above or below the 45° line 
are associated with the onset and retreat of the PM10 episode. Figure 10 shows the time 
series of the measured daily averaged PM10 concentrations and the predictions by the 
TVAREX model. It is found that the time delay problem is generally resolved. Figure 11 shows 
the scatterplot of the predicted daily averaged PM10 concentration by the TVAREX model  
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Figure 9. Predicted PM10 concentrations by TVAR(1) model against its measurements 
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Figure 10. Measured daily averaged PM10 concentrations and predictions by TVAREX model 

between 2003 and 2005 
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Figure 11. Predicted PM10 concentrations by TVAREX model against its measurements 
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against its measurements. In comparison to the scatterplot generated from results of the 
TVAR(1) model, it is found that the points become more concentrated around the 45° line. It 
echoes the observation of the improvement in the time-delay problem as shown in Figure 10 
as well as the reduction of the process noise variance commented before. 
To further compare their performances of capturing the pollution episodes, two performance 
indicators, namely the probability of detection (POD) and the probability of false alarm (PFA) 
are calculated for reference. The probability of detection is defined as follows:  

( )XzXxPPOD kkk ≥≥= − |ˆ 1|  (19) 
It is equal to the probability that the model can produce a prediction which is greater than or 
equal to the threshold X when it is given that the daily averaged [PM10] is greater than or 
equal to the threshold. The probability of false alarm (PFA) is defined as follows: 

( )XxXzPPFA kkk ≥<= −1|ˆ|  (20) 
It is equal to the probability that the daily averaged [PM10] is below the threshold X when it is 
given that the model produces a prediction which is greater than or equal to the threshold. 
Figures 12(a) and 12(b) show the POD and PFA when the threshold X takes on different 
values between 0 and 150. It is noted that the POD values of the TVAREX model are mostly 
higher than the POD envelope of the TVAR(p) models, while the PFA values of the TVAREX  
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Figure 12. (a) POD, (b) PFA for TVAR(p) models and TVAREX model  
 

model are far below the PFA envelope. Therefore, the TVAREX model is more efficient than 
the TVAR(p) models in capturing the episode conditions with lower frequency of false alarm. 
In fact, the TVAREX model is more efficient in capturing the episodic conditions since it was 
shown in the previous literatures (Chang et al., 2007; Feng et al., 2007; Lee and Hills, 2003; 
Lee and Savtchenko, 2006) that the high PM10 concentrations occurring in Macau and nearby 
cities of the Pearl River Delta were due to fine weather (no rainfall), poor dispersion condition, 
and the northerly air masses, and those factors were taken into consideration by the 
exogenous inputs, thus reducing the process noise of the model. 
 
5. CONCLUSION 
The Bayesian approach was proposed to find the optimal estimates of noise parameters for 
the Kalman filter based air quality prediction system. By optimizing the objective function with 
respect to the noise variances, the Bayesian methodology allows the most probable values of 
noise variances to be obtained and the associated uncertainties to be quantified. Throughout 
the case study, the Bayesian approach was demonstrated to be capable to estimate the most 
probable noise variances of the Kalman filter based TVAR(p) model and TVAREX model for 
the prediction of daily averaged PM10 concentrations in Macau between 2001 and 2002. It 
was found that the estimated process noise variance of the TVAREX model is less than that 
of the TVAR(1) model since the TVAREX model reflects more influencing physics which 
controls the variation of daily averaged PM10 concentrations in Macau. By further using data 
between 2003 and 2005, the choice of the noise variances was demonstrated to affect the 
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performance, which was indicated by the root-mean-squared error, of the TVAR(p) model and 
the TVAREX model. In addition, it was found that the optimal estimates of noise variances 
obtained by Bayesian approach for both models were located in the region where the model 
performance is not sensitive to the choice of noise variances. The Bayesian approach was 
demonstrated to provide more reasonable estimates of noise variances compared to the 
noise variances found by simply minimizing the root-mean-squared prediction error of the 
model. The evidences illustrated the reliability of the approach. By comparing the optimized 
TVAREX model and the TVAR(p) models in predicting the daily averaged PM10 
concentrations between 2003 and 2005, it was found that the TVAREX model outperformed 
the TVAR(p) models in terms of the general performance and the episode capturing ability.  
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