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ABSTRACT
The influence of microscale and mesoscale meteorology on the local scale variation of air
temperature cannot be correctly simulated by the coarse resolution Global Climate Models. The
scope of this work is to develop a hybrid dynamic-statistical downscaling procedure and quantify its
predictive ability to estimate air temperature variability at finer spatial scales. The study focuses on
the warm period of the year (June – August) and the method is applied to eight sites located in
Greece with different topographical characteristics. The two-step methodology initially involves the
dynamic downscaling of coarse resolution climate data via the RegCM4 regional climate model and
subsequently the statistical downscaling of the modeled outputs by training site-specific artificial
neural networks (ANN). The RegCM4 model is employed to enhance the representativity of the
dataset, while the ANNs are used as function approximators to model the relationship between a
number of atmospheric predictor variables and the observed air temperature time series. An insight
of the ANN transfer function is obtained by examining the relative contribution of each input variable.
The performance of the methodology is evaluated and the results indicate significant improvement
from the inclusion of the ANN models in downscaling air temperature.
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1. INTRODUCTION
Climate modeling is one of the most computationally intensive areas of scientific research and
Global Circulation Models (GCMs) are the main tools for assessing climate variability. Their
horizontal resolution is roughly 150 km, leading to spatially averaged reconstructions and projections
that do not correctly simulate the influence of mesoscale and microscale features on regional or
local climate (Pasini, 2008). The requirement for high resolution regional to local scale climate
simulations is accomplished by employing dynamical, statistical or dynamic – statistical downscaling
models by using the gridded output of GCMs or reanalysis datasets. Dynamical downscaling is
performed using Regional Climate Models (RCMs), with their output being dynamically and
thermodynamically fully self-consistent while the statistical methods exploit the statistical
dependence between the simulated large-scale fields and the climatic variable under study. The
dynamical downscaling procedure involves the nesting of a high resolution RCM into the lower
resolution GCM (Maraun et al., 2010). RCMs share the same representation of atmospheric physical
processes with GCMs but due to their higher spatial and temporal resolution they are able to a more
realistic simulation of the regional climate. Climate variability has been studied extensively using
RCMs for various regions such as Europe (Giorgi et al., 2004a; b; Raisanen et al., 2004; Gao et al.,
2006), North America (Giorgi et al, 1994, 1998; Chen et al., 2003; Leung et al., 2004; Diffenbaugh et
al., 2005; Duffy et al., 2006), East Asia (Hirakuchi and Giorgi, 1995) and Australia (McGregor and
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Walsh, 1994). More recently for the European domain, the PRUDENCE (Christensen and
Christensen, 2007; Deque, 2007; Prudence, 2013) and the ENSEMBLES (Hewitt, 2005;
“ENSEMBLES”, 2013) research projects perform an intercomparison of multiple RCMs driven by
several GCMs. Regarding the statistical downscaling methods a wide range of techniques is used,
ranging from regression-based to weather generators and weather typing models (Wilby and Wigley,
1997). ANNs are a class of regression-based models and their structure allows them to approximate
highly non-linear input-output relationships. In climate downscaling research studies, ANNs have
been mainly used for providing local air temperature and precipitation estimations (Coulibali et al.,
2005; Moriondo and Bindi, 2006; Haylock et al., 2006; Olsson et al., 2001; Hewitson and Crane;
1996). In a more recent study Chadwick et al. (2011) proposed an ANN approach to downscale
ECHAM5 GCM temperature and rainfall fields to a RCM scale with encouraging results. The scope
of the current study is to propose a combined dynamic-statistical downscaling procedure for point
temperature estimates and test its accuracy in eight meteorological stations with different
topographical characteristics.

2. DATA AND METHODS
The climate simulations are performed for the domain presented in Figure 1a and the study utilizes
gridded reanalysis datasets and meteorological observations for seven summer periods from 2001
to 2007. The study is focused on June to August when temperature variability is relatively low and
extreme temperature climatic conditions (i.e. heat waves) are more frequent, influencing the area of
study to a great extent. The selection of the period takes into account the computationally - intensive
modeling of the climate system via Regional Climate Models and the requirement of a
comprehensive set of training and validation datasets for the ANNs statistical modeling. The seven
summer period dataset is considered adequate for examining the performance of the proposed
methodology as it consists of 5096 values of three-hourly modeled data. In detail, the four-times
daily with a 2.5ox2.5o latitude-longitude horizontal resolution NCEP Reanalysis 2 (NNRP2) dataset
(Kanamitsu et al., 2002), containing mean sea level pressure, surface pressure, relative humidity,
surface height, air temperature, zonal and meridional wind components. Additionally, mean weekly
on a 1-degree spatial resolution Optimum Interpolation Sea Surface Temperatures (OISST)
(Reynolds et al., 2002) are used, along with surface air temperature observations from eight
meteorological stations in Greece (Figure 1b). The station characteristics are presented in Table 1.

Table 1. Characteristics of meteorological stations
Station Latitude (°N) Longitude (°E) Altitude a.m.s.l. (m)

Kastoria 40.450 21.283 604
Kozani 40.300 21.783 627
Alexandroupoli 40.850 25.917 3
Larissa 39.633 22.417 74
Hellinikon 37.900 23.733 14
Syros 37.417 24.950 72
Tripoli 37.533 22.400 652
Souda 35.483 24.117 151

The selected stations are evenly distributed and cover the topographical characteristics of the area
under study. Syros and Souda are island stations, while Alexandroupoli and Hellinikon are
representative coastal stations in northeastern and southeastern Greece respectively. Furthermore,
Kastoria, Kozani and Tripoli are continental high-altitude stations, whereas Larissa is a characteristic
low-altitude mainland station of central Greece.
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Figure 1. Climate simulations (RegCM4) domain (a) and locations of the meteorological stations (red
squares) and of the four nearest RegCM4 grid points for each station (blue squares) (b).

The proposed hybrid downscaling approach consists of two consecutive phases (Figure 2). Initially,
gridded climate data are downscaled in a finer spatial scale using the forth version of the ICTP
Regional Climate Model (RegCM4) and subsequently its outputs are statistically downscaled at a
point location via Artificial Neural Networks (ANN). The model evaluation is based on the
comparison between the simulated and observed temperature values at eight selected sites in
Greece.

Figure 2. Two-step hybrid downscaling methodology

RegCM4 is a hydrostatic, compressible, sigma-p vertical coordinate model (Giorgi et al., 1993a;
Giorgi et al., 1993b) run on an Arakawa B-grid in which wind and thermodynamical variables are
horizontally staggered. The RegCM4 model dynamics, which model physics along with the coupling
with other components of the climate system, are described thoroughly by Giorgi et al. (2012). In this
study the NNPR2 and the OISST datasets are used for the reanalysis driven RegCM4 simulations
as atmospheric boundary conditions and sea surface temperature input data respectively. The
atmospheric component of the model is coupled with the Biosphere-Atmosphere Transfer Scheme
BATS (Dickinson et al., 1993) while the subgrid explicit moisture scheme SUBEX (Pal et al., 2000) is
used to handle non-convective clouds and precipitation. The RegCM4 domain (Figure 1) in this
study is centered at 37.97°N and 23.91°E and consists of 160 points in the longitude and 225 points
in the latitude direction, with a 20km horizontal resolution and 18 vertical levels. The output dataset
is further postprocessed to produce the three-hourly with a 0.5° spatial resolution regional RegCM4
surface model dataset. For each of the three monthly simulations, a spin-up time of one month
(May) is used.
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The ANN statistical downscaling scheme is based on the output values of the RegCM4 surface
model and in total eight predictor variables (Table 2) are selected for estimating the ambient
temperature at local scales. In this study feed forward ANNs are used as function approximators due
to their ability of estimating any measurable input-output function to any desired degree of accuracy
(Hornik et al., 1989). Feed-forward ANNs are a group of fully directional interconnected neural
process elements (PE) and the architecture used in this study, along with the functional model of a
single PE is presented in Figure 3. For each station a different ANN is trained and tested for its
ability to statistical downscale climate data. The ANNs consist of an input layer with 32 neurons,
which are the input nodes of the predictor variables at the four nearest to each target station grid
point (Gsw, Gse, Gnw and Gne) and a single neuron in the output layer, which is the output node of
the mean three hourly air temperature target values at each station. In each case the selected ANN
architecture contains one hidden layer and the number of the hidden layer neurons is determined
using the forward selection method. According to this method, an ANN is trained and tested initially
using a small number of hidden neurons. Subsequently, the number of hidden neurons is increased
and the process is repeated until the results indicate a satisfactory generalization ability of the
network (Heaton, 2005). The input–output datasets are divided, using the random sampling
approach, into training, validation and test sets, with 70% of the values used for training, 15% for
validation and 15% for the test set. The selected percentages (70% -15% -15%) are selected as the
optimum configuration since they satisfy the trade-off between the requirement of a representative
training dataset and sufficient data for validation and testing. Multiple ANNs are trained with a
varying number of hidden layer neurons (from 1 to 70) and the optimum architecture is selected by
examining, according to the forward selection method, the Mean Absolute Error (MAE) on the
validation set. In all cases, in order to avoid the drawback of the backpropagation algorithm of an
initial suboptimal set of weights, training is performed multiple times (25 repetitions).

Figure 3. Feed-forward ANN architecture and a single ANN process element

Table 2. RegCM4 surface model output variables, which are used as ANN inputs
Variable Description Variable Description

1 flw (W m-1) Net longwave 5 sina (W m-1) Solar incident
2 fsw (W m-1) Net solar absorbed 6 t2m (°C) Temperature (2m)
3 q2m Specific humidity (2m) 7 u10m (m s-1) Eastward wind (10m)
4 sena (W m-1) Sensible heat 8 v10m (m s-1) Northward wind (10m)

Initially the results of the RegCM4 simulations are directly compared with the land-based
observations and subsequently the combined site-specific RegCM4-ANN temperature downscaling
procedure is similarly validated versus the station temperature records. An additional comparison is
based on the analysis of the results between these two comparisons. The performance evaluation of
the proposed downscaling scheme is based on a set of difference and correlation measures
(Willmott, 1982). The results of the MAE, the Root Mean Square Error (RMSE), the Mean Bias Error
(MBE), the Mean Absolute Percentage Error (MAPE), the correlation coefficient (R), the coefficient
of determination (R2) and the index of agreement (d) are discussed and the scatter diagrams of the
observed versus the predicted values are presented for each station. Furthermore, the residuals,
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which represent the portion of the test data that are not explained by the downscaling methodology,
are analyzed by examining their distributions.
An insight into the underlying input-output transfer function of the statistical downscaling element of
the methodology is obtained by utilizing the weights method (Garson, 1991). The method
determines the relative importance (RI) of the predictor variable inputs in estimating air temperature
for each station. The method is commonly used for identifying the optimum set of inputs in neural
networks and it involves the partitioning of the hidden-output layer weights of each hidden neuron in
components that are associated with each input neuron.

3. RESULTS AND DISCUSSION
An initial analysis of the RegCM4 simulation results is performed by comparing the observed
temperature values at the eight target stations against the corresponding simulated values at the
four nearest to each station grid points. The analysis reveals the grid point that is more closely
related to the station observations. An interesting remark is that for half of the stations
(Alexandroupoli, Hellinikon, Syros and Tripoli) the lower MAE values are not observed for the most
geographically proximate to the station grid point (Table 3). This finding is further established from
the comparison of the observed and simulated air temperature distributions by plotting the
corresponding box-plots (Figure 4). A characteristic case is illustrated for the Tripoli site where the
most proximate grid point (Gse) systematically overestimates air temperature (3.08°C MAE value),
while the most distant point (Gnw) reproduces the observed temperature distribution with more
accuracy (Figure 4g), a finding related to the complex topographical features of the region. On the
contrary, an example of a good agreement between the closest to the station grid point and in-situ
observations is noted at the Souda site where the Gnw point is similar to the station air temperature
distribution (Figure 4h) with a relative low MAE value (1.68°C).

Figure 4. Box-plots comparison of the observed and RegCM4 simulated temperature
at the four closest grid points at Kastoria (a), Kozani (b), Alexandroupoli (c),

Larissa (d), Hellinikon (e), Syros (f), Tripoli (g) and Souda (h)

According to the results of Table 3, better agreement is observed for the island stations (Souda and
Syros) whereas there are considerable discrepancies for the inland, high altitude stations (Tripoli,
Kastoria and Kozani). The MAE values range from 1.68 °C to 3.08 °C for the Souda and Tripoli
station respectively. Regarding Alexandroupoli and Souda sites, higher errors are observed when
comparing the grid points located over sea with the land-based station data. This is attributed to the
different ambient temperature characteristics prevailing over sea and soil.
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Table 3. MAE results in °C between temperature observations and RegCM4 grid points. Boldfaced
values correspond to the errors of the closest to the station grid point

Kastoria Kozani Alexandroupoli Larissa Hellinikon Syros Tripoli Souda
Gsw 3.45 2.69 2.23 2.49 1.73 1.69 3.25 2.37
Gse 3.06 2.50 2.19 2.18 1.72 1.93 3.08 1.80
Gnw 3.22 2.85 2.13 3.29 2.24 1.48 2.90 1.68
Gne 2.77 2.43 2.25 2.21 2.28 1.74 3.15 3.38

An insight of the in-situ observations versus the simulated temperature values at the grid point with
the better agreement in terms of the overall MAE, is presented in the scatter diagrams of Figure 5.
Significant dispersion along the optimum agreement line is observed and RegCM4 simulation biases
are evident even for stations with relatively low MAE values. In detail, RegCM4, clearly
overestimates high temperature values in Hellinikon, Syros and Souda (Figure 5e, 5f and 5h), while
for the Alexandroupoli station the opposite phenomenon is observed (Figure 5c). Although for the
remaining of the stations there is no evident bias, significant dispersion is observed.
This under-representation of local ambient temperature highlights the importance of incorporating
sophisticated statistical models as post-processing elements of regional climate models. The ANNs
in this study are selected for their characteristic ability to model nonlinear relationships between
predictors and predictands, a feature highly desirable for modeling the non-linear climate system.
According to the proposed methodology, 1,750 different ANNs are trained and tested for each
station and the optimum architecture (number of input, hidden and output neurons) is presented in
each case in Table 4. A general remark is that for the mainland coastal (Alexandroupoli and
Hellinikon) and for the island stations (Syros and Souda) the number of hidden layer neurons is
smaller compared to the inland stations. This finding can be attributed to the reduced complexity of
the input-output mapping, accomplished by the ANN transfer function.

Table 4. Number of input, hidden and output layer neurons
Kastoria Kozani Alexandroupoli Larissa Hellinikon Syros Tripoli Souda

Input 32 32 32 32 32 32 32 32
Hidden 69 50 45 67 39 41 58 43
Output 1 1 1 1 1 1 1 1

Figure 5. Comparison scatter plots between RegCM4 simulated temperature and observations at
Kastoria (a), Kozani (b), Alexandroupoli (c), Larissa (d), Hellinikon (e),

Syros (f), Tripoli (g) and Souda (h)
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The overall results of the methodology are presented in Table 5 and the scatter diagrams of the
observed versus the predicted air temperature values for all stations in Figure 6. The low dispersion
along the optimal agreement line illustrates the ability of the methodology to sufficiently model the
effects of local topography in air temperature variation. In detail, the explained variance of the
ambient temperature by the proposed downscaling procedure is greater than 87% for all stations
and up to 90% for the Souda and Alexandroupoli sites. The best results are obtained for the Syros
and Souda stations with 0.83 °C and 0.87 °C MAE values respectively and less than 3.5% MAPE
values. Relatively higher errors are obtained for the inland stations and especially for the Tripoli site
(1.41 °C) The method in general does not systematically over- or under-estimate the observed
temperature values, exhibiting minor MBE values for all stations except Kastoria and Kozani. The
latter stations show evidence of slight overestimation and underestimation with 0.28 °C and -0.15 °C
MBE values respectively. This finding is consistent with the residual distributions (Figure 7) which
are centered for all stations at the [-0.75, 0.75] interval. Specifically for the best performing sites
(Syros and Souda) the distributions are centered with high relative frequencies around 0 °C at the [-
0.5, 0.5] interval (Figure 7f and 7h).

Table 5. Model evaluation results

MAE (°C) RMSE (°C) MBE (°C)
MAPE

(%) R R2 d
Kastoria 1.24 1.94 0.28 5.43 0.94 0.87 0.97
Kozani 1.28 1.90 -0.15 5.48 0.93 0.87 0.96
Alexandroupoli 1.13 1.47 0.08 4.83 0.95 0.90 0.97
Larissa 1.22 1.79 -0.04 5.07 0.95 0.89 0.97
Hellinikon 1.05 1.35 0.00 3.96 0.95 0.89 0.97
Syros 0.83 1.09 0.07 3.06 0.92 0.85 0.96
Tripoli 1.41 2.14 0.06 6.65 0.94 0.88 0.97
Souda 0.87 1.23 0.01 3.42 0.95 0.90 0.97

Figure 6. Comparison of the downscaled air temperature and observations at Kastoria (a),
Kozani (b), Alexandroupoli (c), Larissa (d), Hellinikon (e), Syros (f), Tripoli (g) and Souda (h)
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Figure 7. Residual distributions at Kastoria (a), Kozani (b), Alexandroupoli (c), Larissa (d),
Hellinikon (e), Syros (f), Tripoli (g) and Souda (h)

The inclusion of the statistical element of the downscaling procedure results in significant
improvement in terms of the overall test set MAE. The relative MAE decreases range from 46% to
55.8% for the Larissa and Tripoli stations respectively. Higher decreases are observed for the
stations where the RegCM4 simulations exhibited the highest errors.
The relative contribution of each predictor variable from the application of the weights method,
averaged over all grid points, is presented in Figure 8. The results denote the relevance of the
selected predictors in estimating ambient temperature. In general, two different patterns are
observed. According to the first pattern (Kozani, Hellinikon and Syros) the net solar absorbed
radiation (fsw) and solar incident (sina) variables contribute less to a certain extent, while the
modeled output of sensible heat (sena), temperature (T) and net longwave (flw) exhibit the higher RI
values. According to the second pattern, no significant differences between the variables’ RI are
observed, a finding that is more evident at the Larissa and Tripoli stations.

Figure 8. Relative importance of ANN input parameters at Kastoria (a), Kozani (b),
Alexandroupoli (c), Larissa (d), Hellinikon (e), Syros (f), Tripoli (g) and Souda (h)
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4. CONCLUSIONS
This work highlights the importance of combining dynamic and statistical downscaling models for
effectively estimating meteorological variables in local scales. The selected RegCM4-ANN
downscaling method gives promising results for providing site-specific ambient temperature values,
especially for the mainland coastal and island sites. An advantage of including a statistical
downscaling element in the downscaling procedure is their ability to provide on-site climate
information; this is highly desirable in climate impact studies and policy making and can be achieved
by training different site-specific ANNs for targeted locations. The statistical element of the
methodology (ANNs) can be extended to include not only the RegCM4 surface outputs but also
large-scale GCM or reanalysis data predictors. Future work is suggested for estimating the
uncertainties and the related errors of regional climate models driven by GCMs for the Eastern
Mediterranean and selecting the optimum statistical downscaling procedure for more reliable future
projections of climate change at finer spatial scales.
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