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ABSTRACT 
This paper is focussed on the study of the air movement and temperature distribution inside 
refrigerating compartment of household frost-free refrigerators. It is well known that the correct air 
circulation and temperature distribution inside the refrigerated chamber are two of the most 
important factors that affect refrigerator efficiency. In the frost-free refrigerators the cooled air is 
supplied directly inside the fresh food and vegetable cabinets. Therefore, studies intended to 
establish the actual air flow and temperature distributions inside these cabinets are relevant in order 
to improve temperature homogeneity and to reduce energy consumption. The methodology applied 
in this work is based on the numerical simulation of the cabinets by means of computational fluid 
dynamics. Turbulence is solved by means of a Large Eddy Simulation model. Unsteady three-
dimensional numerical studies are carried out, simulating the cooling process starting from a uniform 
warm temperature inside the refrigerator. Furthermore, the influence of the location of inlet and outlet 
ports is also investigated. 
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1 INTRODUCTION 
Nowadays, final users are not only concerned about the refrigerator capability to preserve perish-
able food products fresh, which is its basic function, but also about the refrigerator performance 
referring to energy saving (Fukuyo et al., 2003). It is well known that the correct air circulation and 
temperature distribution inside the refrigerated chamber are the most important factors that affect 
refrigerator efficiency (Meng and Yu, 2009). Furthermore, a rapid cooling is also desirable to avoid a 
premature deterioration of the food products (Gupta et al., 2007). In the frost-free refrigerators the 
cooled air is supplied directly into the fresh food and vegetable cabinets. Therefore, studies intended 
to establish the actual air flow and temperature distributions inside these cabinets are relevant in 
order to improve temperature homogeneity and reduce energy consumption. Hence, this paper is 
focussed on the study of temperature distribution and air movement inside the household frost-free 
refrigerators. 
This type of refrigerators has been working for the last two decades. However, only a few studies 
dealing with the thermo-fluid dynamics behaviour inside this kind of refrigerators can be found in the 
technical literature. An example of the experimental work carried out to study the performance of the 
supply-air openings is that recently presented by Meng and Yu (Meng and Yu, 2009). Numerical 
studies to model refrigerator behaviour assuming steady state and laminar regime have been done 
by Gupta et al. (Gupta et al., 2007). They also conducted experiments to validating their numerical 
results. They found a qualitative agreement between the numerical predictions and the experimental 
results. Moreover, Fukuyo et al. (Fukuyo et al., 2003) and Ding et al. (Ding et al., 2004) studied the 
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flow in turbulent regime by means of RANS k −ε models. Unlike, these papers, in this work the 
turbulence is solved by means of advanced LES models. Furthermore, unsteady three-dimensional 
numerical studies, simulating the cooling process starting from a uniform warm temperature inside 
the refrigerator are carried out. Moreover, the influence of the location of inlet and outlet ports is 
considered. 
The numerical methodology applied in the present paper is based on the finite volume technique. 
The governing partial differential equations are converted into algebraic ones using unstructured 
meshes. Second-order schemes are used for transient and spatial discretization. Local grid 
refinement is applied (Lehmkuhl et al., 2007). Furthermore, the mathematical formulation used in this 
work is based on symmetry-preserving discretization of the governing equations, which assures that 
some important properties of the Navier-Stokes equations are retained in the discretization process 
(Verstappen and Veldman, 2003). 
 
2 MATHEMATICAL FORMULATION 
The volume-filtered Navier-Stokes equations of the fluid flow (continuity, momentum and energy), 
used in LES simulations, can be written as follows: 

 

 

 
where  is the subgrid-scale (sgs) heat flux; and  is the sgs stress tensor. These new unknowns 
appear in the filtering process as a result of the non-linear character of the convective term. They 
must be somehow determined in order to close the system of equations.  is responsible for the 
energy transfer between the filtered and resolved eddies. Furthermore,  represents the turbulent 
transport of the temperature due to the unresolved (subgrid) velocity field. 
The sgs stress tensor is generally modelled using the strain rate tensor of the resolved field 

 and the subgrid eddy viscosity, , as follows: 

 
Different models, which are explained below, can be used to model the subgrid eddy viscosity. 
Furthermore, for  the selected models use the simple eddy diffusivity approach that can be written 
as: 

 
where is the subgrid Prandtl number. 
 
Subgrid-scale model 
A suitable approach for the subgrid eddy viscosity is needed to model turbulent scales that cannot 
be resolved. The simplest model is the Smagorinsky model (Smagorinsky, 1963). In the 
Smagorinsky’s model, the subgrid viscosity is proportional to the subgrid characteristic length scale 
∆ and to a characteristic turbulent velocity. 

 
One shortcoming of this model is that the Smagorinsky coefficient  is a constant that must be 
tuned. Furthermore, this model needs a damping function to correct the near-wall behaviour of the 
subgrid viscosity. Therefore, in order to overcome these deficiencies Nicoud and Ducros (Nicoud 
and Ducros, 1999) proposed a model known as wall adapting local eddy viscosity (WALE) model. 
This model accounts for the effects of both the strain and the rotation rate of the smallest resolved 
turbulent fluctuations. Moreover, it reproduces correctly the subgrid eddy viscosity behaviour near 
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solid walls, and it does not require a second filtering operation to evaluate Smagorinsky coefficient, 
thus it saves computing time. The WALE model, which is selected in this work to approximate 
subgrid eddy viscosity, reads: 

 

 

 
 

 
3 NUMERICAL METHODOLOGY 
The proposed methodology is based on the numerical simulation of the cabinet by means of 
computational fluid dynamics and heat transfer (CFD&HT). A new general purpose CFD&HT code, 
called TermoFluids (Lehmkuhl et al., 2007), is used in this work. The code uses efficient algorithms, 
which work adequately on slow networks of personal computers clusters. At is was commented, 
turbulence is solved by means of the WALE LES model (Sagaut, 2001). Governing partial differential 
equations are converted into algebraic ones using unstructured collocated meshes, symmetry-
preserving discretization (Verstappen and Veldman, 2003), and considering Boussinesq assumption. 
Pressure-velocity coupling is solved by means of fully explicit fractional step algorithm. A third-order 
gear like scheme is used for time integration (Fishpool and Leschziner, 2009). Conservative 
schemes, which preserve kinetic energy, are applied for the spatial discretization. Local refinement 
of the grid, where large thermal and velocity gradients exist, is applied. Partitioning of the 
computational domain is carried out by means of MeTIS software. For the solution of the pressure 
(Poisson) equation, an iterative conjugate-gradient (CG) method with a diagonal scaling 
preconditioner is used (Borrell et al., 2007). 
 
4 ILLUSTRATIVE NUMERICAL RESULTS 
4.1 Configuration analysed 
In Figure 1 a schematic representation of the refrigerating compartment studied is presented. As it 
was already explained, the first t=15s of the cooling process starting from a uniform warm 
temperature inside the refrigerator is numerically studied. At the beginning of the simulation a 
constant temperature (To) of 283K is assumed in the whole space for the cases analysed. Uniform 
velocity and temperature (Tin) profiles of cooled air are given at the inlet openings, which are located 
in the rear wall. An inlet mass flow rate ( in) of 2.0×10−3kg/s at Tin=263K is imposed. Non-slip 
condition is used at walls and shelves. Furthermore, they are considered adiabatic. In the air return 
grill a pressure outflow boundary condition is assumed. Moreover, two inlet ports distributions are 
studied while inlet mass flow rate is kept constant. A summary of the numerical and physical 
parameters taken into account in this work is presented in Table 1. 
Firstly, inlet openings plotted with solid line are used (referred as case 1). Then, two inlet openings 
are added, which are depicted with dashed line in Figure 1 (referred as case 2). Return grill, which is 
placed behind vegetable compartment, and the rest of the geometry is similar for the two cases. A 
fully three dimensional unstructured grid with approximately 4100000 control volumes (cv) is used. 
The mesh is refined near the air inlet, the outlet and the solid walls, taking care of capturing steep 
gradients near these places. 
 

Table 1. Physical and numerical simulation parameters 

in [kg s-1] To [K] Tin [K] t [s] Grid [cv] Case 1 Case 2 

2.0×10−3 283 263 15 4100000 6 inlets 8 inlets 
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Figure 1. Refrigerator layout 

 
4.2 Results and discussion 
This section is dedicated to the presentation of numerical results obtained by the authors in order to 
characterise fluid-dynamic and thermal fields of the refrigerating compartment of a household frost-
free refrigerator. Even though the grid used in this simulation can be considered adequate, it is still 
advisable to carry out a more detailed verification process to determine the grid independence of the 
numerical results. However, given the complexity of the studied configuration a compromise 
between computational time and desired accuracy should be achieved. Therefore, results hereafter 
presented should be taken as a good qualitative approximation (see also (Jaramillo et al., 2010)). 
Firstly, the geometry with six inlet openings, case 1, is analysed. Numerical results for this 
configuration are presented in Figure 2. In this Figure, temperature distribution after 15s is shown. 
Red colour represents profiles where temperature has decreased one degree, i.e. air is at 282K. As 
it can be seen, in some regions temperature has not diminished even by 1K after 15s. 
Air flow in this refrigerating compartment is given by mixed convection. At the beginning, the air 
flows into the space impinging the door shelves. Then, part of it gains heat from the surroundings, 
becoming lighter and flowing up due to buoyancy effects. Straight after, recirculating it mixes with the 
cold air stream emanating from the inlets and flows down, entering the second shelve. At this point, 
part of the air settles down in the upper part of this space. Whereas, the other part is recirculated 
when it mixes with the inlet stream of this shelf. Finally, the combined air flows down through the gap 
between the door and the shelf. The process is repeated for the third shelf. However, below the 
fourth shelf there are not inlet openings and most of the air is heated by the surroundings here and it 
creates a recirculation. Only a small part of the cold air flows down towards the lid of vegetable 
compartment. 
In an effort to improve the air temperature distribution homogeneity in the vertical direction, two new 
inlet openings are included below the fourth shelf from the top. Their location is depicted with dashed 
line in Figure 1 (case 2). The mass flow is kept constant and similar to the one used in the case 1 
configuration. The most remarkable difference can be observed near the bottom part of the cabinet 
in Figure 3. As a consequence of the new inlet ports, cooled air now produces a decrease of the 
temperature near the vegetable compartment and the space below the fourth shelf, where the new 
inlets are located. Furthermore, in this Figure is easy to see that the temperature has reduced below, 
in the front of, and around the vegetable compartment. 
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Figure 2. Case 1. Temperature distribution after 15s of having started the cooling process 

 

 
Figure 3. Case 2: Temperature distribution after 15s of having started the cooling process 

 
However, the cooled air has not been introduced within vegetable box. Moreover, it seems that due 
to the new inlet velocity, the air temperature in the top part of the refrigerating compartment has 
decreased in case 2 a bit more than in case 1. 
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The temperature distribution for case 1 seen from the back part (section AA’) of the refrigerator, after 
the same 15s of simulation, is presented in Figure 4(a). As it can be seen, the temperature is not 
uniform in the horizontal direction, especially in the three upper shelves, where the inlet ports are 
located. Apart from the inlet jets, the coolest regions are observed near the walls, between second 
and third shelves. Furthermore, the temperature in the upper part is the lowest, and it increases 
towards the bottom part of the refrigerating compartment. At this time, the entire vegetable 
compartment remains approximately at the initial temperature for case 1 configuration. Moreover, 
the cold air begins to flow down towards the vegetable compartment by the central part of the 
cabinet in horizontal direction. 

 
  (a) case 1           (b) case 2 
Figure 4. Temperature distribution in the central cross section AA’ 

 
In order to compare the differences between the inlets configurations studied, a rear view of the 
temperature distribution for case 2 (section AA’) is shown in Figure 4(b). As it can be seen, in the 
upper part of the refrigerating cabinet, the temperature distribution is more regular in the horizontal 
direction. A temperature reduction can be observed over the first and the second shelves. For the 
case 2 new temperature profiles are also observable below fourth shelf. Furthermore, now the air 
flows down more uniformly through the gap between door and cabinet shelves. In this Figure is also 
possible to observe as the cold air flows around the vegetable box towards the outlet grid reducing in 
this way the temperature in this region, whereas, the air within vegetable box remains still almost 
unchanged. 
Figure 5 shows the temperature contours within the refrigerating compartment at the symmetry 
plane BB’ for both case 1 (a) and case 2 (b). It can be seen from this Figure that using case 1 the 
lowest temperature is obtained near the door between the first and the second shelves from the top. 
Hence, a reduction of approximately 7K is observed in this zone. Furthermore, the temperature 
decreases faster in the portion adjacent to the door. On the other hand, using case 2 the 
temperature reduction is less than using case1, especially in the region near the door. However, a 
lower temperature is observed in a larger zone within the refrigerating compartment. Furthermore, 
the temperature in the region over the trays has reduced more using case 2, even on the lid 
vegetable compartment, and around it. In spite of the temperature reduction is less using case 2 
than using case 1, a more homogeneous distribution, which covers a larger zone, is obtained. 
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Nevertheless, the temperature in the space between the third and the fourth shelves remains almost 
unaffected in both case 1 and case 2. The addition of the two inlet ports in case 2 located in the 
space above the lid of vegetable compartment, as depicted in Figure 1, shows that: i) air on the fifth 
shelf becomes colder faster than in case 1, due to the inlets position; ii) the air in the bottom part of 
the cabinet is colder in case 2, and it exits colder than in case 1. 

 
(a) case 1      (b) case 2 

Figure 5. Temperature distribution on the symmetry central plane BB’ 
 

Temperature variations along the central vertical axis are shown in Figure 6. The lowest temperature 
is observed at P1 location and it increases as one move downward along this axis. For all points 
studied the temperature is lower using case 2. Moreover, the temperature at points P4 and P5 using 
case 1 has not changed yet. After the first 5s of simulation only the temperature at P1 of case 2 has 
decreased considerably. Because of the first cold air impingement against the top door drawer, a 
recirculation of cold air is created between the two upper inlet jets. Then the air gains heat from 
surrounding, it becomes warmer and it fills the upper space. In this way a lower temperature at the 
top shelf is maintained. 
 

 
Figure 6. Temperature distribution along the central vertical axis (points P1 to P5 in Figure 1) 
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CONCLUSIONS 
The cases displayed are an example of the versatility and possibilities that numerical simulation 
provides for the study of the refrigerating cabinets of household frost-free refrigerators. Two different 
inlet opening distribution have been studied and their influence on the refrigerator performance 
evaluated. 
Using the proposed inlet ports a more homogeneous temperature distribution in vertical direction is 
obtained. Furthermore, it is slightly more uniform in the horizontal direction. With case 2 
configuration a more rapid cooling of larger regions within the refrigerating compartment is observed, 
i.e. after the same simulation time, the temperature has further decreased. However, it would be 
interesting to change the position of the two new inlet ports to the space between the third and the 
fourth shelves in order to reduce the temperature more rapidly in this region. 
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