
 

 
 

Global NEST Journal, Vol 8, No 3, pp 241-251, 2006 
Copyright© 2006 Global NEST 

Printed in Greece. All rights reserved 

 

 

 
 

AN APPLICATION OF THEORETICAL PROBABILITY DISTRIBUTIONS, TO 
THE STUDY OF PM10 AND PM2.5 TIME SERIES IN ATHENS, GREECE 

 
 

I. GAVRIIL1 1National Technical University of Athens
G. GRIVAS1 School of Chemical Engineering 
P. KASSOMENOS2 Heroon Polytechniou 9 
A. CHALOULAKOU1,* GR-15780 Zografos, Athens, Greece 
N. SPYRELLIS1 2University of Ioannina, Faculty of Physics 
 Department of Astrogeophysics 
 University Campus, GR-45110, Ioannina, Greece 
 
Received: 08/02/06 *to whom all correspondence should be addressed:
Accepted: 02/05/06 e-mail: dchal@central.ntua.gr

 
ABSTRACT 
Probability density functions (pdf) have been used in the analysis of the distribution of 
pollutant data, for examining the frequency of high concentration events. There have been 
very few studies on the concentration distribution of PM in urban areas. The distribution of PM 
concentrations has an impact on human health effects and the setting of PM regulations. 
Eight probability distribution functions were fitted to measured concentrations of PM10 and 
PM2.5 in order to determine the shape of the concentration distribution. The “goodness-of-fit” 
of the probability density functions, to the data, was evaluated, using various statistical indices 
(including Chi-square and Kolmogorov-Smirnov tests). The evaluation was conducted for two 
separate years and the results indicated that the Pearson type VI pdf provided a better fit to 
the measured data. Other functions exhibiting high accuracy of fit were the inverse Gaussian, 
the lognormal and Pearson type V.  
The possibility to use probability density functions for predicting the daily high concentration 
percentiles to less than everyday sampling scenarios is also shown. The differences in the 
distribution of concentrations under these scenarios are important for regulatory compliance. 
When trying to detect the high concentrations there is significant possibility of missing the 
events and thus, underestimating the number of exceedances occurred. Significant deviations 
from actual daily measurements of PM10 and PM2.5 concentration percentiles were observed, 
when infrequent sampling scenarios were examined. The differences were higher for the 1-in-
6 sampling schedules and reached 2.8% for mean PM10 and 8% for PM2.5 while for the 
maximum concentrations the respective differences were 21.3% and 31.9%.  Differences 
between the frequency distributions of everyday and non-everyday sampled concentrations 
were observed, while lognormal and inverse Gaussian functions provided a better 
approximation of the upper percentiles.  
Fitting infrequent data on continuous probability functions for the improvement of the 
approximation to the real statistical values provided good results regarding the 90th percentile, 
which corresponds to the E.U. provision of 35 annual exceedances of 24-h limit PM10 values. 
In the case of the extreme 98th and 99th percentiles, the method provided satisfactory results 
for both the PM10 infrequent sampling scenarios.  

KEYWORDS: Air Pollution, PM10, PM2.5, probability density functions. 
 
INTRODUCTION 
Given the stochastic nature of atmospheric processes, concentrations of air pollutants can be 
treated as random variables with measurable statistical properties. If certain conditions are 
met, the statistical characteristics of pollutant concentrations can be described by theoretical 
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probability density functions. The imposition of these particular mathematical forms can 
represent the distribution of underlying data. Probability density functions (pdf) have been 
extensively used in the past years in a variety of applications, where data smoothing, 
interpolation or extrapolation is needed (Wilks, 1995). 
Specifically, in atmospheric sciences the most characteristic applications include the 
approximation of the frequency of exceedances of critical concentration levels and the 
estimation of reduction in emissions, required for attainment of AQS (Air Quality Standard) 
objectives (Georgopoulos and Seinfend, 1982; Abatzoglou et al., 1996; Burkehardt et al., 
1998; Morel et al., 1999). In most of the cases, pollutant concentrations have been found to 
better fit to the lognormal distributions This fact is in agreement with past assumptions that 
deviation from log-normality should be attributed to sampling error (DeNevers et al., 1979), or 
with the theory of random dilutions (Ott, 1990). However, it should be stressed out that a 
strong natural basis is not a prerequisite for the selection of a specific distribution.    
Recently, the use of frequency distributions has been extended to ambient particulate matter 
concentrations (Kao and Friedlander, 1996; Rumburg et al., 2001; Lu, 2002; Gomiscek et al., 
2002; Lu and Fang, 2003; Grivas et al., 2004; Lu, 2004; Karaca et al., 2005). Air pollution 
research has been increasingly focused to particulate matter during the last years, in view of 
the severe threat it poses on human health, being related to detrimental respiratory and 
cardiovascular impairments (Dockery and Pope, 1994; Schwartz et al., 1996; Katsouyanni et 
al., 1997)   
Results of systematic and extensive research that commenced during the end of the previous 
decade, indicated that particulate matter (PM10 and PM2.5) related atmospheric pollution 
would emerge as one of the primary environmental issues in the area of Athens (Chaloulakou 
et al., 2003a; Grivas et al., 2004; Chaloulakou et al., 2005). The research findings were 
verified when official monitoring of PM10 begun in various locations, indicating severe 
exceedances of EU-established concentration limit values (Grivas and Chaloulakou, 2006).   
In the present work, PM10 and PM2.5 concentration time series from a central measurement 
site in Athens were statistically examined for the determination of their parent frequency 
distribution, with the comparative evaluation of several theoretical probability distributions. 
Probability density functions were also fit to concentration data corresponding to less than 
daily sampling frequencies, in order to investigate whether this procedure can lead to an 
improved estimation of high concentration events, as compared to the actual less than daily 
measurement program.  This additional objective of this study becomes of particular 
importance taking into account that less than daily sampling scenarios are mentioned in both 
the EU Air Quality Directives, with 14% annual data coverage for indicative measurement 
(CEC,1999) and in the USEPA PM10 and PM2.5 air quality standards (1-every-3 days 
minimum sampling frequency). Moreover, the new proposal to the European parliament for a 
directive on ambient air quality and cleaner air for Europe (CEC, 2005), which now includes 
standards for PM2.5, clearly mentions the potential of following less than daily sampling 
routines and measurement campaigns of short duration during a year (supplemented by 
modeling), in cases where annual mean concentrations remain below an upper assessment 
threshold (14 µg m-3

 for PM10 and 10 µg m-3 for PM2.5). 
 
DATA AND METHODS  
Particulate matter measurements 
PM10 and PM2.5 sampling was conducted in central Athens (Aristotelous str.). Samplers were 
placed in a station of the National Air Pollution Monitoring Network, at the building of the 
Ministry of Public Health. The sampling location is characterized by heavy vehicular traffic, as 
well as intense commercial and human activity. Twenty-four hour PM10 and PM2.5 samples 
(midnight to midnight) were collected daily and simultaneously, using two low-volume 
reference-equivalent samplers (US EPA-approved Partisol Model 2000, Rupprecht & 
Patashnick). Sampler inlets were located 6.7 meters above ground. Particles were collected 
on 47mm Pallflex TX40 filters (Teflon-coated glass fiber filters). Particle concentrations were 
determined gravimetrically using an electronic microbalance (Mettler Toledo AT201), with a 
resolution of 0.01 mg. Both blank and field filter samples were conditioned at constant 
temperature (22±3°C) and relative humidity (40±5%) for at least 24 hours prior to being 
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weighted. The precision of the measurements was determined with parallel sampling and was 
found equal to 2.5%. The limit of detection (LOD) was estimated at 3 times the standard 
deviation of field blank filters collected (Burton et al., 1996) and was found 5.4 µg m-³ for PM10 
and 6.3 µg m-³ for PM2.5. 
More details on the measurement protocol as well as extensive analysis of the particle 
pollution problem of Athens have already been reported in literature (Chaloulakou et al., 
2003a; Grivas et al., 2004; Chaloulakou et al., 2005; Manalis et al., 2005). 
Everyday measurements were carried out between June1999 - May2001. The measurement 
schedule resulted in a dataset with a coverage exceeding 90%. For the filling of the missing 
values a neural network-based imputation technique was implemented. This routine has also 
been implemented successfully in PM time series management and analysis before (Gavriil et 
al., 2005). Details on the modeling methodology can be found at Chaloulakou et al. (2003c). 
 
Probability density functions 
The obtained PM10 and PM2.5 concentrations (x) were fitted to eight selected parent probability 
distributions, for two years of measurements separately. The examined distributions are 
described by the following functions:  

 Lognormal 

fL(x) = 1
2π (x γ)σ−

exp
2

2
(ln(x γ) µ)[ ]

2σ
− −− , x>γ;  -∞<µ<∞; σ>0; γ≥0            (1) 

where µ  and σ  are the scale and shape parameters of the distribution representing the 
geometric mean and standard geometric deviation respectively, while γ  is the location 
parameter. Fitting data to a lognormal distribution evaluates the assumption that the 
logarithmic transformed data values follow a Gaussian distribution.  

 Gamma  

fG(x)=
λ 1

λ
(x γ)
σ Γ(λ)

−−  exp[-( x γ
σ
− )], x≥γ; σ>0; λ>0;  γ≥0  (2) 

where σ  and λ  are the scale and shape parameters of the distribution, γ  is the location 
parameter and Γ is the gamma function: 

Γ(λ)= λ 1 t

0

t e dt
∞

− −∫  (Eulerian integral form)  (3) 

 
 Weibull 

fW(x) =
λ 1λ x γ

σ σ

−−⎛ ⎞
⎜ ⎟
⎝ ⎠

 exp[-( x γ
σ
− ) λ], x≥γ; σ>0; λ>0;  γ≥0  (4) 

where σ  and λ  are the scale and shape parameters of the distribution, and γ  is the location 
parameter. If λ=1 the Weibull distribution is identical with the Gamma distribution. 

 Beta  

fB(x)= 
1 σ λ σ 1 λ 1

(β α) (x α) (β x)
Β(σ,λ)

− − − −

− − −  ,   α< x <β; σ>0; λ>0; β> α >0  (5) 

where σ  and λ  are the scale and shape parameters of the distribution, [α,β] is the 
concentration range and  B is the beta function (Legendre’s solution to the Eulerian integral of 
the first kind).: 

 Β(σ,λ)= Γ(σ)Γ(λ)
Γ(σ λ)+

= (σ 1)!(λ 1)!
(σ λ 1)!
− −
+ −

   (6) 
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 Inverse Gaussian  

fIG(x)= 
1/ 2

3
1

2π x
⎛ ⎞
⎜ ⎟σ⎝ ⎠

 exp[- 1
2x

( x − µ
µσ

) 2], 0<x<∞; µ>0; σ>0   (7) 

where µ  is the data mean and σ  is a scale parameter. The inverse Gaussian is also known 

as the Wald distribution. 

 Log-logistic  

fLL(x)= 
σ
1

2

ln(x )
exp σ ]

ln(x )[1 exp ]
σ

− γ

− γ
+

, x≥γ; σ>0;  γ≥0  (8) 

where σ  is a scaling parameter and γ is the location parameter. The log-logistic distribution is 
derived from the logistic distribution, through logarithmic tranformation of the data. 

 Pearson type V  

fPV(x)=
1

Γ( )( )

σ

σ+
λ

σ χ − γ

 exp(-
x
λ
− γ

), x≥γ; σ>0; λ>0;  γ≥0  (9) 

where Γ is the Gamma function, σ  and λ  are the scale and shape parameters, and γ is the 
location parameter.  

 Pearson type VI 

fPVI(x)=
1s

(x )a

( , )( ( ))

β−

σ+β
− γ

Β β σ α + χ− γ

, x≥γ; a>0; b>0; m>0;  γ≥0   (10) 

where B is the beta function, α, β are the shape parameters, σ  the scale parameter, and γ is 
the location parameter. The last two distributions are part of the wider Pearson frequency 
distribution system which is comprised by 12 theoretical distributions. Pearson distributions 
are classified by the parameter κ: 

κ=
21 2

2 1 2 1

( 3)

4(2 3 6)(4 3 )

β β +

β − β − β − β
   (11) 

where β1 β2 are the squared skewness and squared kurtosis, respectively. For κ=1 the 
distribution is called Pearson type V and for κ>1 Pearson type VI (in fact the Gamma 
distribution is the Pearson type III distribution where κ →∞)   
 
Parameter Estimation  
The specific nature of theoretical distribution is determined by the particular values of their 
parameters. The optimal values of the scale and shape parameters of the distributions were 
estimated using the method of maximum likelihood.  
This method aims to calculate θk parameters of a k-parameter distribution in order to 
maximize the likelihood function L(θ).  
 
L(θ)=L(x1,x2,…,xn;θ1,θ2,…,θκ)=f(x1;θ1,θ2,…,θκ)f(x2;θ1,θ2,…,θκ)…f(xn;θ1,θ2,…,θκ)=

n

i 1 2

i 1

f(x; , ,..., )κ
=

θ θ θ∏                 (12) 

where (x1,x2,…,xn) are the independent observations from a random sample deriving from a 
population following a distribution described by a κ-parameter probability density function  
f(x;θ1,θ2,…,θκ).  
 
If f(x1; θ1,θ2,…,θκ) ,f(x2; θ1,θ2,…,θκ),…, f(xn; θ1,θ2,…,θκ) are the probability functions of each of 
each of the sample values then the maximum likelihood function describes the joint probability 
function of the random sample.  
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The likelihood function being differentiable at θ1,θ2,…,θκ   the estimation of the parameters 
with the maximum likelihood method is made by taking the partial derivatives of L(θ) by each 
parameter and solving the resulting κ equations to zero. Usually, computations are made 
using the logarithm of the likelihood function, and since the logarithm is also a strictly 
increasing function the same parameters values will maximize both the likelihood and the log-
likelihood functions.  

κ

lnL( )
θ

∂ θ
∂

=0                 (14) 

The method of maximum likelihood is considered advantageous for parameter estimation in 
comparison with the simple methods of moments (which is also occasionally used), as the 
latter can lead to misleading extrapolations and interferences. On the other hand, since the 
method of maximum likelihood requires ample processing power due to the complex 
numerical calculations involved, when large data sets are analyzed, computational time 
increases substantially.  
The location parameter γ was set to zero for the continuous distribution functions since it was 
desired that concentrations would exhibit behaviour with physical meaning (it should be noted 
that accepting or stating a certain value as a global or regional particle concentration 
background is rather difficult and will not be attempted). The upper bound b for the beta 
distribution was set to 250 µg m-3 for PM10 and to 150 µg m-3 for PM2.5 since these 
concentration levels have never been reached in the Greater Area of Athens, on a daily basis, 
even in the occurrence of severe episodic conditions. The optimum scale parameter for the 
Pearson type VI distribution was determined using an iterative trial and error process. 
 
Goodness-of-fit tests 
The comparative evaluation of the above presented functions was made using the 
Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D) and Chi-Square (χ2) goodness-of-fit 
tests.  

 The K-S statistic is defined as the maximum difference between the sample cumulative 
distribution function -S(x) and the examined theoretical function -F(x).  

D0=max F(x) S(x)−                 (15) 

The D0 value is compared with the Dn,a value, which is the largest difference acceptable at the 
significance level a for a n-sized sample. If D0< Dn,a the hypothesis that the sample can be 
described by the fitted theoretical distribution is accepted at the a significance level. 

 The A-D statistic controls the hypothesis that the sample derives from a distribution which 
is described by the fitted density function, using the Α2statistic: 
Α2=-Ν-S,  where: 

S=
N

i N 1 I

i 1

2i 1[lnF(X ) ln(1 F(X )]
N

+ −

=

−
+ −∑               (16) 

and X1…XN are the sample values sorted in order of magnitude.  The A-D statistic is 
considered more dependable than the K-S statistic since it emphasizes at the upper tails of 
the distribution functions where the larger discrepancies are expected.  

 The χ2 test divides the data range in a predefined number of k independent bins and then 
compares the number (n) of actual observations in each bin (ni) with the number theoretically 
assigned to this bin by the fitted function. The χ2 test essentially compares the data histogram 
with the probability density function. The comparison is made with the statistic: 

χ2
=

k 2i i

ii 1

(n np )
np=

−∑    (17) 

where pi is the probability of occurrence in the ith bin for the theoretical distribution. Under the 
null hypothesis that the data were drawn from the examined distribution, the test statistic 
follows the chi-square distribution with v degrees of freedom (v=number of bins - number of 
parameters- 1).  In fact, the chi-square distribution is a special case of the aforementioned 
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Gamma distribution with λ=v/2 and σ=2. Small values of the statistic support the null 
hypothesis. It is noted that the determination of number of bins for the χ2 tests should be done 
in a way that at least 5 expected counts are included in each concentration interval (Wilks, 
1995). 
 
Statistic indicators 
A series of error indices and correlation measures were also utilized.  If Pi is the expected 
value from the probability density function and Oi is the measured value then the following 
indices are defined (Wilmott, 1982; Chaloulakou et al., 2003b): 

Mean Absolute Error (MAE): MAE= 1
N

N

i 1

Oi Pi
=

−∑             (18) 

Root Mean Square Error (RMSE): RMSE= ( 1
N

N
2

i 1

Oi Pi
=

−∑ ) 21/           (19) 

Correlation Coefficient (R): R = 

N
2

i 1
N

2

i 1

(Pi Oi)

(Oi Oi)

=

=

−

−

∑

∑
             (20) 

Index of Agreement (d2): d2= 

( )

N
2

i 1
N

i 1

(Pi Oi)
1

Pi Oi Oi Oi

=

=

−

−

− + −

∑

∑
            (21) 

Software 
The bulk of the probability distribution statistical treatment was conducted using the 
specialized software suite, ExpertFit 6.0 (Averill M. Law & Associates). Supplementary 
statistical runs were made with SPSS 11.0 and numerical calculations with Wolfram Research 
Mathematica 5.0. 
 
RESULTS AND DISCUSSION 
Fitting distribution functions to the entire dataset 
The aforementioned conventional statistical indicators (MAE, RMSE, R2, d2) were used at an 
initial stage for the evaluation and selection of the above eight parent distributions, which are 
presented in this study, from the larger ensemble of continuous univariate theoretical 
distributions. When tested with the traditional statistical error and correlation measures they 
all exhibited an above average approximation capability and they were subsequently 
evaluated using the goodness of fit statistics. The best-fit probability density functions are 
selected based on the combined results of goodness of fit statistics.  
The results of the evaluation of probability density functions and their rankings are displayed 
on Table 1 for PM10 and on Table 2 for PM2.5. The best overall performing pdf for both PM10 
and PM2.5 was the tri-parametric Pearson type VI. Good results were also obtained for 
Pearson type V, inverse Gaussian and lognormal frequency distributions. The performance of 
the log-logistic pdf was marginally satisfactory while beta, gamma and Weibull distributions 
did not produce quite an accurate fit to the data. The results are supported by the findings, 
recently presented by Karaca et al. (2005) for PM10 and PM2.5 data in Turkey, which evaluate 
a wide set of candidate theoretical probability distributions. Earlier work has also shown the 
precedence of lognormal frequency distributions over gamma and Weibull distributions 
(Rumburg et al., 2001, Grivas et al., 2004). A general conclusion is that the distribution of 
measured PM data, which present higher frequencies of low to mid range concentrations but 
also considerable high concentration events, were best approximated by strongly right-
skewed continuous probability density functions. This is reasonable since particulate matter 
concentrations as atmospheric variables present a high degree of asymmetry, being 
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physically limited on the left, since they are constrained to be nonnegativite, but they also 
tend to include distinct high values (episodic events).  
 

Table 1. Goodness-of it statistics of examined probability distributions to daily PM10 
concentrations, for the two years of measurement. Rankings listed in parentheses 

 1st year  2nd year  
 K-S A-D χ2 K-S A-D χ2 

Beta 0.091(7) 3.256(7) 13.68(7) 0.101(8) 4.712(7) 27.20(7) 

Gamma 0.069(6) 1.594(6) 7.89(6) 0.067(6) 1.998(6) 12.96(6) 

Inverse Gaussian 0.045(4) 0.512(3) 4.80(3) 0.039(1) 0.520(3) 6.98(5) 

Log-logistic 0.044(3) 0.890(5) 7.25(4) 0.049(5) 0.803(5) 5.43(3) 

Lognormal 0.046(5) 0.573(4) 7.74(5) 0.040(3) 0.586(4) 6.86(4) 

Pearson V 0.034(2) 0.316(2) 3.91(1) 0.042(4) 0.278(2) 4.26(2) 

Pearson VI 0.032(1) 0.315(1) 4.60(2) 0.040(2) 0.267(1) 4.06(1) 
Weibull 0.102(8) 5.057(8) 39.94(8) 0.096(7) 5.213(8) 29.65(8) 

 
Table 2. Goodness-of it statistics of examined probability distributions to daily PM2.5 
concentrations, for the two years of measurement. Rankings listed in parentheses 

 1st year  2nd year  

 K-S A-D χ2 K-S A-D χ2 

Beta 0.084(7) 3.209(7) 26.27(7) 0.092(8) 4.161(7) 25.46(7) 
Gamma 0.058(6) 1.516(6) 12.67(6) 0.078(6) 2.004(6) 12.39(6) 

Inverse Gaussian 0.045(3) 0.551(1) 5.26(1) 0.048(3) 0.527(3) 5.17(1) 
Log-logistic 0.053(5) 1.021(5) 9.71(5) 0.049(4) 1.111(5) 10.57(5) 
Lognormal 0.047(4) 0.619(3) 5.53(2) 0.051(5) 0.685(4) 6.04(2) 
Pearson V 0.043(1) 0.643(4) 6.91(4) 0.047(2) 0.477(2) 8.40(4) 
Pearson VI 0.043(1) 0.580(2) 5.77(3) 0.044(1) 0.455(1) 7.31(3) 

Weibull 0.090(8) 4.888(8) 42.01(8) 0.084(7) 4.403(8) 30.18(8) 
 
Figures 1a, 1b show the Pearson type VI distribution overplot, superimposed on the 
histogram of measured PM10 and PM2.5 data, respectively. The parameters of the distribution 
are displayed along with measures of statistical agreement between measured and expected 
concentrations. The low values of the error indices (MAE, RMSE) and the close to unity 
values of R2 and d2 verify the suitability of the function for describing the distribution of 
measured data. 
 
Statistics for infrequent sampling scenarios 
Table 3 presents basic statistics for PM10 and PM2.5 concentrations measured during 2000 as 
well as the range of statistics of the time series corresponding to hypothetic non-daily 
sampling frequencies. A discussion of the severity of PM10 and PM2.5 levels observed in 
central Athens can be found elsewhere (Chaloulakou et al., 2003a; Grivas et al., 2004; 
Chaloulakou et al., 2005; Grivas and Chaloulakou, 2006). However, it is worth mentioning the 
severe deviation of the PM2.5 annual mean concentration from the oncoming EU concentration 
cap of 25 µg m-3 (CEC, 2005). This value (based on rolling three year averages) has to be 
achieved by 2010. In view of the requirements of this new directive, the Greek authorities 
have established a 4-station PM2.5 monitoring network.  
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Figure 1. Pearson type VI overplot on density histograms of PM10 (a) and PM2.5 (b) 

concentrations 
 

Table 3. Descriptive statistics for everyday and infrequent sampling during  
the calendar year of 2000 

 PM10 PM2.5 
 Daily 1 in 3 days 

(range) 
1 in 6 days 

(range) 
Daily 1 in 3 days 

(range) 
1 in 6 days 

(range) 
Mean 76.7 75.7-77.5 74.5-78.9 40.2 39.9-40.1 37 -41.4 
Max. 207 185-207 163-207 135 108-135 92-135 
90th 125 115-132 110-135 65.3 63-71 57-77 
98th 171 157-170 141-177 91.2 91-92 82-92 
99th 183 174-183 152-190 95.0 92-97 86-113 
s 34.3 33.3-36.2 27.6-39.5 20.2 18.6-21.5 17.1-22.8 
Skewness 1.15 1.07-1.27 0.90-1.52 1.38 1.24-1.62 0.78-1.98 
Kurtosis 1.14 0.60-1.67 0.11-3.46 2.44 1.70-3.96 0.61-5.82 

 
As expected, the discrepancies in the results increase as sampling frequency decreases. The 
differences are less pronounced for the average concentrations (reaching 2.8% for PM10 and 
8% for PM2.5 at the 1-in-6 sampling schedules) than for the higher percentiles (discrepancies 
for the maxima as high as 21.3% and 31.9% for PM10 and PM2.5, respectively). Large 
differences are also characteristic for scewness and kurtosis coefficients and indicate that the 
underlying distributions of data sets obtained from infrequent sampling present differences, as 
compared to those of daily sampling. It is characteristic, that the error for the moments about 
the arithmetic mean increases with the rank of the moment (standard deviation is the second, 
skewness is the third and kurtosis the fourth moment).    
 
Evaluation of extreme percentiles with fitted probability density functions 
The evaluation procedure was repeated for the less-than-daily sampling scenarios. These 
involve 1-every-6 days (old USEPA) and 1-every-3 days (current USEPA) sampling 
frequencies. The sampling frequency of 1-every-6 days is close to the required frequency by 
the E.U. for indicative sampling of PM10. Higher percentiles of concentrations (relative to 
existing limit values) are calculated using the theoretical distributions and compared to those 
actually measured.   
The datasets coming from infrequent sampling were fit to the four best performing functions 
described above (Pearson type VI, Pearson type V, inverse Gaussian, lognormal). It was 
examined if the high percentiles calculated by the distributions provide a better approximation 
to those of everyday sampling in comparison to the high percentiles deriving from actual 
infrequent sampling. The root mean square error was used as a measure of agreement, since 
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more than one datasets correspond to infrequent sampling scenarios. The results are 
presented on Table 4. 
 

Table 4. Root mean square error between concentration statistics based on everyday 
sampling and statistics based on infrequent sampling (measured and fitted). 

Values in µg m-³ 

 Measured 
Pearson  
type V 

Pearson 
type VI 

Inverse 
Gaussian Lognormal 

PM10, 1-in-3 

Mean 0.7 0.8 0.8 0.7 0.8 
90th 7.1 3.7 4.1 4.7 5.4 
98th 8.1 14.9 12.6 6.7 6.7 
99th 6.7 33.6 29.7 6.2 6.5 

PM10, 1-in-6 
Mean 1.7 2.0 1.9 1.7 1.8 
90th 9.6 8.5 8.8 8.6 9.0 
98th 19.2 24.8 23.1 15.9 16.3 
99th 20.1 43.5 39.3 18.5 19.4 

PM2.5, 1-in-3 
Mean 0.2 0.6 0.4 0.2 0.3 
90th 3.8 3.4 2.9 2.2 2.0 
98th 0.2 10.3 19.6 15.6 6.2 
99th 2.6 37.7 33.1 12.4 13.1 

PM2.5, 1-in-6 

Mean 1.5 1.5 1.5 1.5 1.5 
90th 6.2 4.3 4.3 3.8 3.8 
98th 5.5 21.1 19.4 8.4 8.6 
99th 10.3 39.1 35.6 13.8 14.8 

 
In the case of infrequent sampling the lognormal and inverse Gaussian and lognormal pdf 
provided a better fit especially for the higher concentration range. The suitability of the 
lognormal probability density function for data obtained by an 1-every-6 days sampling 
procedure has been already documented in literature (Kao and Friedlander, 1995; Rumburg 
et al., 2001; Grivas et al., 2004). It appears that the most sophisticated Pearson type V and VI 
function can capitalize on more lengthy datasets (e.g. the full datasets previously examined) 
rather than on datasets of reduced size. 
The results indicate that for the 90th percentile (which approximately corresponds to the E.U. 
provision of 35 annual exceedances of 24-h limit PM10 values), the statistical treatment of 
measured data can provide a better approximation to the concentration which derives from 
everyday sampling and is required for investigation of compliance with legislated air quality 
standards. Thus, it is proposed that in the case of infrequent sampling, a post-hoc statistical 
treatment can lead to an improved estimate of the threshold concentration over which the 
critical number of 35 annual exceedances appears.  
In the case of the 98th (already used by the USEPA for PM2.5 and is relevant to the E.U. 
provision of 7 annual exceedances of 24-h limit PM values, which has been proposed for the 
second stage of the implementation of the air quality daughter directive) and 99th (used by the 
USEPA for PM10) percentiles, the inverse Gaussian and lognormal function appeared to 
improve the approximation for both of the PM10 infrequent sampling scenarios. The 
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improvement (expressed in RMSE) for the 98th and 99th percentiles respectively, using the 
inverse Gaussian function was 17.2% and 7.5% for 1-every-3 days sampling, while in the 
case of 1-every-6 days sampling the improvement was 17.4% and 7.9% for the two 
percentiles.  
Regarding PM2.5 the 98th and 99th percentiles calculated from fitted data appear to deviate 
from the actual values. Rumburg et al. (2001) also report similar findings for PM2.5 
concentrations. The inability of the theoretical distributions to accurately reproduce the 
variability of the actual dataset in the extreme value area range of PM2.5 concentrations 
should be attributed to the abnormality in the right tail of their actual distribution. This is also 
apparent from Figure 1b. Indeed, an increased (by 24%) frequency of concentrations around 
90µg m-3 (where the extreme percentiles are calculated) is observed, in comparison with the 
preceding concentration range. The procedure should be reevaluated in the future when a 
lengthier PM2.5 time-series will become available.  
 
5. CONCLUSIONS 
Selected probability distribution functions were fitted to PM10 and PM2.5 concentration data 
measured for two years at a central location in Athens. As evaluated with goodness- of-fit 
measures, it appeared that the most appropriate probability density functions were the 
Pearson type VI and V, the inverse Gaussian and the lognormal functions. We conclude on 
the suitability of continuous, positively skewed distributions for describing PM data in areas 
with increased concentration levels.  
Significant deviations from actual daily measurements for the higher PM10 and PM2.5 
concentration percentiles were obtained, when infrequent sampling scenarios were examined. 
The use of theoretical probability distributions on infrequent data for the improvement of the 
approximation to the real statistical values yielded good results regarding the crucial 90th 
concentration percentile for both PM10 and PM2.5 and also improved the approximation to 98th 
and  99th percentiles for PM10. For PM2.5 the application did not appear efficient for the 
extreme 98th and 99th percentiles. It is proposed that more specific analysis should be 
conducted for the right tails of particulate matter frequency distributions, including the 
consideration of extreme value probability density functions.  
The presented specific application of probability density function in the field of particulate 
matter study is one of the numerous possible applications and highlights the importance of 
this promising method. It is suggested that further research is conducting by exploring the 
statistical characters of particulate matter for pursuing critical tasks, as the prediction of 
exceedances of limit values and assessment thresholds, the estimation of emission source 
reduction and evaluation of proposed air quality control policies. 
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