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ABSTACT 
In catchment hydrology, it is in practice impossible to measure everything we would like to know 
about the hydrological system, mainly due to high catchment heterogeneity and the limitations of 
measurement techniques. These limitations and the need to extrapolate information from the 
available measurements in both space and time initiated the application of hydrological models. 
However, hydrological models suffer from uncertainty in their predictions, which reduces applicability 
of and confidence in such models. In this review, we summarise the different classifications of 
hydrological model types, and discuss relative advantages and disadvantages of each type of 
model. In addition, we summarise established model calibration processes and discuss the sources 
of uncertainty that affect model predictions. We summarise different methods to quantify uncertainty 
in the model predictions that could sit well within a model evaluation framework. And, finally, some 
recent developments in hydrological modelling are reviewed. 

KEYWORDS: Hydrological models; Model identification; Calibration; Uncertainty; Sensitivity 
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1. INTRODUCTION 
Hydrological models are important for a wide range of applications, including water resources 
planning, development and management, flood prediction and design, and coupled systems 
modelling including, for example, water quality, hydro-ecology and climate. However, due to 
resource constraints and the limited range of available measurement techniques, there are 
limitations to the availability of spatial-temporal data; hence a need exists to extrapolate information 
from the available measurements in space and time; in addition there is a need to assess the likely 
hydrological impact of future system response, for example to climate and land management 
change.  
Hydrological model applications have a variety of objectives, depending on the problem that needs 
to be investigated. Singh and Woolhiser (2002), among others, summarised the different aims of 
hydrological modelling: 
• Extrapolation of point measurements in both space and time. 
• Improving the fundamental understanding of existing hydrological systems and assessing the 

impact of change (e.g. climate and land cover change) on water resources. 



194    PECHLIVANIDIS et al. 

• Developing new models or improving old models for management decisions on current and future 
catchment hydrology (e.g. water-table management, wetland restoration, irrigation water 
management, streamflow restoration, water quality evaluation, and flood forecasting and 
management). 

There are several published reviews of hydrological modelling (e.g. Wheater et al., 1993; Beven, 
2001; Singh and Woolhiser, 2002; Wagener et al., 2004), however some aspects of the field are 
changing rapidly, for example new developments in distributed modelling, treatment of uncertainty, 
modelling ungauged basins and non-stationarity; hence there is now scope for an updated review of 
modelling capabilities and limitations. The paper is organised as follows. Section 2 gives a review of 
the different model types. Section 3 presents model identification methods with emphasis on model 
calibration and sensitivity analysis. Section 4 presents uncertainty analysis methods, highlighting the 
different sources of uncertainty and methods to quantify their importance in model predictions. 
Section 5 presents recent developments in hydrological modelling, including distributing modelling 
and use of remote sensed data, Prediction in Ungauged Basins, and integration of land surface 
schemes into Global Climate Models. Finally, Section 6 consists of a discussion and summary. 
 
2. CLASSIFICATION OF HYDROLOGICAL MODELS 
Previous reviews have outlined several ways to classify hydrological models (see for example, 
Singh, 1995; Singh and Frevert, 2006). In the current paper, we follow the classification system 
outlined in Wheater et al. (1993); hence, models are classified based on their model structure, 
spatial distribution, stochasticity, and spatial-temporal application.  
 
2.1. Model structure based classification 
2.1.1. Metric models 
The essential characteristic of metric models is that they are primarily based on observations and 
seek to characterise the system response from the available data (Wheater et al., 1993). Metric 
approaches are thus essentially empirical; an early example is unit hydrograph (UH) theory for 
event-based catchment-scale simulation developed by Sherman (1932). The simplicity of such 
models has allowed them to be applied relatively easily to ungauged catchments by regional 
analysis, relating (parsimonious) model properties (i.e. unit hydrograph time to peak, percentage 
runoff etc.) to physical and climatic descriptors of the catchment. This type of regional analysis was 
developed for national application in the UK Flood Studies Report (NERC, 1975) and Flood 
Estimation Handbook (NERC, 1999), for example. However, it should be noted that metric models 
depend on the range of available data and although they have been used to extrapolate to extreme 
events or ungauged catchments, results are usually lacking in formal specification of confidence 
limits (Wheater, 2002). 
Among the most interesting of recent approaches in metric modelling are Data Based Mechanistic 
(DBM) modelling (Young et al., 1997; Young, 2003; Ratto et al., 2007) and Artificial Neural Networks 
(ANN) (Lange, 1999; Jain et al., 2004; Dawson et al., 2006). ANNs use available rainfall and runoff 
data to learn about the behaviour of rainfall-runoff processes. ANNs generally have three layers: the 
first layer is the layer of input (i.e. rainfall), the second layer is the hidden layer of neurons, and the 
third layer is the layer of output (i.e. streamflow). This type of model learns the relationship (a 
process usually called “training”) between input and output by adjusting the connection weights in 
the network so that the network response closely matches the runoff response (Lekkas, 2008). 
DBM modelling draws on a powerful family of methods for time-series analysis and simulation. It is 
an empirical approach whereby the model structure is developed as an empirical transfer function 
model based on the available input-output data (Young, 2005); hence parameters can be estimated 
from input-output data only. The model is further evaluated and interpreted in a physically 
meaningful, mechanistic manner, which differs from a purely empirical approach (Lees, 2000). 
Generally, the identified transfer function model is defined as a combination of a non-linear filter (to 
generate effective rainfall) followed by linear stores to represent the hydrological responses, such as 
”quick” and ”slow” flow processes (Young, 1999; Lekkas and Onof, 2006). An advantage of the DBM 
method is its ability to identify structures without being constrained by prior hypotheses, and hence 
the ability to identify models which were unexpected a priori (McIntyre et al., In Press). 
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2.1.2. Conceptual models 
According to Wheater et al. (1993), conceptual models are based on two criteria: firstly, the structure 
of the model is specified prior to any modelling being undertaken, and secondly not all of the model 
parameters have a direct physical interpretation (i.e. they are not independently measurable). 
Therefore at least some conceptual model parameters have to be estimated through calibration 
against observed data. Conceptual models generally represent all of the component hydrological 
processes perceived to be of importance in catchment scale input-output relationships (Wheater, 
2002). This type of model varies considerably in complexity and the model structure tends to be 
based on extensive use of schematic storages, which are combined to represent a conceptual view 
of the important hydrological features. Models can vary in complexity from two or three simple 
storages up to a highly complex representation. Wheater (2002) noted that “a simple model structure 
does not reflect the complexity of the rainfall-runoff response and a complex model structure is not 
always supported by the available data. A balance between the complexity of the model and 
available information is crucial for successful model identification”. Model complexity can be reduced 
by an appropriate degree through identification statistics (Dunn et al., 2008) or sensitivity analysis 
(Fenicia et al., 2008; van Werkhoven et al., 2009), and by holding insensitive parameters constant or 
formally re-structuring the model (McIntyre and Al-Qurashi, 2009). 
 
2.1.3. Physics-based models 
Physic-based models represent the component hydrological processes such as evapotranspiration, 
infiltration, overflow, and saturated and unsaturated zone flow using the governing equations of 
motion (usually formulated as non-linear partial differential equations) based on continuum 
mechanics. Generally, the equations of motion of the constituent processes are solved numerically 
using a finite difference or a finite element spatial discretisation; however, analytical solutions can 
exist (Wheater et al., 1993). In theory, physics-based models are defined by wholly measureable 
parameters and can provide continuous simulation of the runoff response without calibration (Beven, 
2001). Such models are a powerful compilation of the relevant idealised processes but raise a 
number of important issues. 
The physics behind the model structure are generally based on laboratory or small-scale in-situ field 
experiments, and hence are affected by the nature of the experiments themselves. Extrapolation to 
larger (e.g. catchment) scales often involves the assumption that the physical processes and 
properties are independent of scale, raising uncertainty about their applicability (Beven, 2004). To 
reduce computational burden and data requirements, simplified physics/mechanics are sometimes 
used to represent the physics (e.g. simplified St. Venant equations, the Green-Ampt equation [Green 
and Ampt, 1911; Mein and Larson, 1973)], leading to deviation from the physical basis and 
additional questionability. 
Catchments typically have a high level of spatial heterogeneity which can be prohibitively expensive 
to observe or comprehensively represent in the model. This is most obvious in the representation of 
subsurface processes because of the difficulty of observation and the high degree of soil/aquifer 
heterogeneity which often exists. In principle the parameters of physics-based models are 
measurable, but in practice this cannot be achieved at the scale of modelling application, because 
such measurements are essentially made at a point (Wheater, 2002). Therefore, these models use 
averaged variables and parameters at grid or element scales which are greater than the scale of 
variation of the processes. Even under a “full” physics representation, parameterisation (including 
spatial variability of parameters) of material properties does not represent catchment heterogeneity. 
The values of local scale properties can be estimated (generalised soil descriptions such as the 
NSRI database (Hallett et al., 2006) and/or through a calibration procedure) but the uncertainties are 
sufficiently large that they may encompass a wide range of process responses (e.g. Stephenson and 
Freeze, 1974). 
 
2.1.4. Hybrid models 
Many models are labelled as one of the above types but in truth include elements of two or more. 
Hybrid metric-conceptual models have been developed to combine the strengths of data-based and 
conceptual models. They commonly consist of a simple conceptual loss function (i.e. soil moisture 
accounting module to produce effective rainfall) and a simple routing component (i.e. a routing 
module to transfer the effective rainfall to streamflow) (Wagener, 2002). These models offer scope 
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for dealing with problems associated with lack of parameter identifiability [e.g. the problem of 
equifinality described by Beven (2006)] through reduction of the dimensionality of the parameter 
space. Hybrid models take advantage of: 1) the unique parameterisation of metric models and their 
ability to efficiently characterise the observational data in statistical terms, and 2) other prior 
knowledge to test hypotheses about the structure of component hydrological stores. Many so-called 
physics-based models are in fact hybrid physically-based-conceptual models [e.g. SWAT (Arnold et 
al., 1993)]. These aim to simplify model structure by representing some of the mathematical-physics 
based processes in a conceptual manner, particularly in cases where physical parameters are 
difficult to measure. In principle this may lead to some improvement in parameter identifiability, 
although such models often have very high dimensionality of the parameter space. And models 
which are primarily conceptual can introduce physically-based components in an attempt to reduce 
the calibration load [e.g. a hydrodynamic channel model driven by outputs of a conceptual hillslope 
model such as in Ajami et al. (2004)]. 
 
2.2. Other types of classification 
2.2.1. Lumped and distributed models 
Lumped models treat the catchment as a single unit, with state variables that represent averages 
over the catchment area (Beven, 2001). In general a lumped model is expressed by differential or 
empirical algebraic equations, taking no account of spatial variability of processes, inputs, boundary 
conditions and system (catchment) geometric characteristics (Singh, 1995). Distributed models 
make predictions that are distributed in space, with state variables that represent local averages, by 
discretising the catchment into a number of elements (or grid squares) and solving the equations for 
the state variables associated with every element (Singh and Frevert, 2006). Distributed models 
hence are capable to some extent of taking into account spatial variability in processes, inputs, 
boundary conditions, and catchment characteristics. However, all distributed models use average 
variables and parameters at element or grid scales, and often parameters are averaged over many 
grid squares, mainly due to data availability (Beven, 2001).  
Semi-distributed models have been suggested to combine the advantages of both types of spatial 
representation. This type of model does not pretend to represent a spatially continuous distribution 
of state variables; rather it discretises the catchment to a degree thought to be useful by the 
modeller using a set of lumped models. A semi-distributed model can therefore represent the 
important features of catchment, while at the same time requiring less data and lower computational 
costs than distributed models (Orellana et al., 2008). 
 
2.2.2. Deterministic and stochastic models 
Models can be classified as deterministic when the results are uniquely determined through known 
relationships between the states and data. Deterministic models produce a single result from a 
simulation with a single set of input data and parameter values, and a given input will always 
produce the same output, if the parameter values are kept constant. Stochastic models use random 
variables to represent process uncertainty and generate different results from one set of input data 
and parameter values when they run under “externally seen” identical conditions (Beven, 2001). A 
particular set of inputs will produce an output according to a statistical distribution. This allows some 
randomness or uncertainty in the possible outcome due to uncertainty in input variables, boundary 
conditions or model parameters. Mixed deterministic-stochastic models can also be created by 
introducing stochastic error models to the deterministic model. For example, stochastic rainfall could 
be used as an input to a deterministic rainfall-runoff model (Singh, 1995); or a deterministic model 
may be used to represent a stochastic system using Monte Carlo simulation (see Section 4.2).  
 
2.2.3. Time-scale based classification 
Rainfall-runoff models can be classified as continuous simulation models or event based models. 
Continuous simulation typically would take into account a time series of rainfall, which may 
incorporate more than one storm event, while event-based models take into account only one storm 
event. Singh (1995) explained that the time scale may be defined by the time intervals used for input 
and internal computations, or by those used for output and calibration of the model, and the choice is 
usually a function of the model’s intended use. Thus, other sub-classifications of the continuous time 
based models are distinguished: sub-daily, daily, monthly, and yearly models. 
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2.2.4. Space-scale based classification 
According to Singh (1995) models may be classified into those of small catchments (up to 100 km2), 
medium-size catchments (100-1000 km2), and large catchments (greater than 1000 km2). However 
this classification is arbitrary and not conceptual, and more ideally the classification might be based 
on homogeneity, for example the scale at which processes can reasonably be averaged, i.e. the 
hydrological response unit size (Young et al., 2006; Wagener et al., 2007). 
 
3. IDENTIFICATION OF HYDROLOGICAL MODELS 
3.1. Calibration of hydrological models 
Model calibration is the process of selecting suitable values of model parameters such that the 
hydrological behaviour of the catchment can be simulated closely (Wagener et al., 2004; Moore and 
Doherty, 2005). There are two types of model parameters in most models: physical parameters, and 
process parameters (Sorooshian and Gupta, 1995). Physical parameters represent the physical 
properties of the catchment and are usually measurable, such as the catchment area, surface slope 
etc. Process parameters represent catchment characteristics that cannot normally be measured 
such as the average depth of water storage capacity, coefficient of nonlinearity controlling discharge 
rates from component stores, etc. (Sorooshian and Gupta, 1995). There are some physical 
parameters, such as the hydraulic conductivity and porosity, which are measurable in theory but 
difficult to measure in practice, and hence are often calibrated. The calibration process can be either 
manual or automatic; however in practice is often a combination of the two. 
  
3.1.1. Manual calibration 
This is a process that mainly depends on the modeller adjusting “by hand” model parameter values 
until the output of the model closely matches the observed data. The adjustment of the parameter 
values is made by the modeller by a trial and error process, so familiarity with the model structure 
and the study catchments saves time and effort. In general, it is difficult to determine the “best fit” or 
to determine a clear point indicating the end of the calibration process, and hence different results 
will be obtained by different modellers (Wheater, 2002). The time consuming nature is another 
problem with this type of calibration. The whole procedure could provide no or limited information 
from the previous parameter adjustments and a formal analysis of uncertainty is “difficult to 
impossible” (Sorooshian and Gupta, 1995).  
 
3.1.2. Automatic calibration 
The development of computer-based methods for automatic calibration of hydrological models has 
been partly motivated by the need to speed up (in terms of computational efficiency) the process of 
calibration. Another aim has been to develop an objective strategy for parameter estimation that 
provides consistent performance by eliminating the subjective human judgement involved in the 
manual approach (Boyle et al., 2000). The automatic process can provide more objectivity and 
reduce the need for expertise with the particular model (Sorooshian and Gupta, 1995). However, 
automatic calibration methods have not yet matured to the point that they can entirely replace 
manual methods due to the difficulty of constructing objective functions and optimisation algorithms 
(see below) which replicate human judgement; and hence automatic calibration is often most 
successful when used in conjunction with a manual procedure. 

According to Sorooshian and Gupta (1995) a typical automatic parameter estimation procedure 
consists of four major elements: the selected objective function (or performance measure), the 
optimisation algorithm, the termination criteria, and the calibration data. The authors stated that the 
purpose of the automatic calibration is to find those values of the model parameters that optimise 
(minimise or maximise, as appropriate) the numerical value of the objective function. 
 
3.1.3. Objective functions (OFs) 
An objective function (or goodness of fit) is a numerical measure of the difference between the 
model simulated output and the observed (measured) catchment output (Schaefli and Gupta, 2007). 
Many different objective functions can be found in the literature; however the most common 
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objective functions are based on the standard least squares methods (and equivalent methods) and 
maximum likelihood methods. 
Drawing from statistical regression and model-fitting theory, the most commonly used objective 
function has been some form of the Weighted Least Squares (WLS) function (Croke, 2007). The 
objective function may include weight parameters, which indicate the importance to be given to fitting 
particular hydrograph characteristics. Among others, Croke (2007) and Koren et al. (2008) 
suggested that including additional data sources, such as soil moisture and groundwater level data, 
can improve the consistency and stability of the parameter estimates. 
A popular objective function in the hydrological literature is the Nash-Sutcliffe Efficiency, NSE, 
criterion, which gives the proportion of the variance of the data explained by the model (Nash and 
Sutcliffe, 1970). Recent studies show that NSE is able to capture the time to peak and linear 
correlation with observed flow while underestimating the variability and mean of flows (Schaefli and 
Gupta, 2007; Gupta et al., 2009, Pechlivanidis et al., 2010a). The recently proposed measure called 
Kling and Gupta Efficiency, KGE (Gupta et al., 2009) has been introduced to overcome some 
limitations of NSE. In the few studies to date, KGE seems to be able to match well variability, peak 
and mean of flows, while keeping the linear correlation between modelled and observed data high 
(Pechlivanidis et al., 2010a).  
Sorooshian and Dracup (1980) developed Maximum Likelihood based objective functions to more 
rigorously account for the presence of either autocorrelation (non-independence) or 
heteroscedasticity (changing variance) of the streamflow data errors. However in general this type of 
formal likelihood function is not favoured in hydrology because the implicit assumptions about data 
and model errors are not justifiable, except in studies using synthetic data sets (Beven, 2001). Other 
functions which are more intuitive to hydrologists, such as NSE or KGE, are generally preferred.  
 
3.1.4. Multi-objective analysis 
Generally, results based on single objective functions are biased to individual aspects of the 
hydrograph; hence intelligent selection of objective functions for specific modelling tasks (e.g. flood 
forecasting, design irrigation schemes, hydroelectric power generation) is crucial (Yapo et al., 1998). 
A parameter set that is optimal for one criterion is rarely that which would be gained using a different 
criterion, while if tradeoffs between several criteria are necessary to satisfy conflicting objectives, an 
optimal parameter set becomes hard to define (Beven, 2001). To address this type of limitation, the 
multi-objective approach, which can consider different aspects of model performance 
simultaneously, was introduced. The results can be used to illustrate the limitations of the model with 
respect to its inability to simultaneously achieve different performance objectives; and can allow the 
modeller to choose the performance trade-off which best suits the application (Gupta et al., 2005).    
One common approach is to aggregate the multi-objectives into a single objective criterion and 
optimise to the single-valued best fit. The result is then strongly dependent on the aggregation, or 
weighting of the objectives (Yapo et al., 1998). An alternative is to employ the concept of Pareto 
optimality, in which a Pareto set of solutions is generated with the characteristic that moving from 
one solution to another results in the improvement of one criterion while causing deterioration in one 
or more others (Boyle et al., 2001). According to Gupta et al. (1998), the Pareto set represents the 
minimum uncertainty that can be achieved for the parameters via calibration, without subjectively 
assigning relative weights to the individual model responses. This uncertainty arises due to 
limitations of the model structure; and the degree of trade-offs between objective functions and 
associated variability of parameter values can be used to help identify and characterise model 
structural error (Wagener et al., 2003; Lee et al., 2005). 
 
3.1.5. Optimisation algorithms 
The surface described by the objective function in the parameter space is called the response 
surface. The optimisation algorithm searches the response surface for the parameter values that 
optimise (minimise or maximise) the numerical value of the objective function, constrained to the 
pre-defined allowable ranges of the parameters. Most optimisation methods or strategies can be 
classified as either local search methods or global search methods. 
Local search methods are designed to efficiently find the local minimum (or maximum) of a response 
surface (or over some small neighbourhood). These type of methods seek to continuously proceed 
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in the direction of improving function value to eventually arrive at the location of the function 
optimum, irrespective of where in the parameter space the search procedure started (Sorooshian 
and Gupta, 1995). The procedure involves three main steps: selecting the direction to move in 
parameter space, deciding how far to move in that direction, and deciding on the termination time 
when no further improvement is considered possible. Local search methods may be classified as 
direct search methods and gradient methods. The former includes straightforward interval searches, 
the downhill simplex and rotating directions are considered as direct search methods. Gradient 
methods include methodologies as the steepest descent, the conjugate gradient, the Newton-
Raphson method, quasi-Newton/variable metric methods and the Levenburg-Marquadt method 
(Jackson, 2007). 
Using a local search, we assume that the solution exists at the first point in the response surface 
where the slope is found to be zero within some specified tolerance, minimising (or maximising) the 
objective function value. However, recognising that there may be multiple points with near-zero 
slopes, this is not normally alone an adequate criterion. Hence global search methods explore the 
entire feasible region of the parameter space attempting to find the bottom of the deepest valley. 
This type of method generally involve the evaluation of the objective function  at a random sample of 
points in the feasible parameter space, followed by subsequent manipulations of the sample using a 
combination of deterministic and probabilistic rules (Jackson, 2007). 
Random search methods are broadly used in hydrological modelling. Sets of random values are 
generated from a specified distribution of model parameters, which are then substituted into the 
model equations to obtain corresponding sets of outputs. In the absence of prior information on joint 
probabilities, the specified distribution commonly assumes that the parameters are independent 
(Beven, 2009). Other global optimisation methodologies include set covering techniques, pure 
random search, adaptive and controller random search, multiple local search, simulated annealing, 
and tabu search. Evolutionary and genetic algorithms such as Multi-Objective COMplex evolution 
(MOCOM) (Yapo et al., 1998), Shuffled Complex Evolution (SCE) (Duan et al., 1993), Multi-
Objective Shuffled Complex Evolution Metropolis (MOSCEM-UA) (Vrugt et al., 2003), AMALGAM 
(Vrugt et al., 2008a), and DREAM (Vrugt et al., 2008b) have been used in hydrological applications. 
 
3.1.6. Termination criteria 
There are three main ways to terminate the search: objective function convergence, parameter 
convergence, and maximum number of iterations. Based on the function convergence criterion the 
iterations are terminated when the function value cannot be significantly further improved. The 
parameter convergence is used to stop the searching when the algorithm is unable to significantly 
improve the parameter values and thus, cannot improve the function over one or more iterations. 
Finally, the maximum iteration criterion is used as a backup to prevent waste of computer time, by 
determining the maximum number of iterations.  
 
3.1.7. Verification 
Verification (also known as validation) takes place after calibration to test if the model performs well 
on a portion of data, which was not used in calibration. Model verification aims to validate the 
model’s robustness and ability to describe the catchment’s hydrological response, and further detect 
any biases in the calibrated parameters (Gupta et al., 2005). Model performance is usually better 
during calibration than verification period, a phenomenon called model divergence (Sorooshian and 
Gupta, 1995). When the degree of divergence is considered unacceptable, modeller has to examine 
the model structure and the calibration procedure for valid or inappropriate assumptions and then 
revise accordingly. 

Split sample tests have commonly been tried [see Perrin et al. (2001)], where one period of 
observations is used in model calibration and one or more separate periods are used to check that 
the model predictions are satisfactory. Klemes (1986) proposed tests including different split 
sampling tests, proxy catchment testing and proxy catchment split sample tests. A proxy catchment 
is treated as ungauged at the model estimation stage, but with some observations of discharge and 
perhaps other variables which are available for the evaluation of the model predictions. More 
recently, Ewen and Parkin (1996) and as an extension Bathurst et al. (2004) proposed the following 
tests: 
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• Simple split-sample test. 
• Different split-sample test, where the data is divided according to rainfall rate (or some other 

variable) in an attempt to show that the model has some general validity. 
• Proxy-catchment test, which uses data for two catchments. This test can be used to show the 

model has even greater general validity as it involves calibrating the model against data for one 
catchment and then running a validation test using data for the other catchment. 

• Different proxy-catchment testing, where the observed data for each catchment are divided into 
two sets according to the rainfall rate (or some other variables). Then the model is calibrated 
against one of the sets (e.g. the dry period for the first test catchments) and a validation test is 
run using a contrasting set (e.g. the wet period data for the second catchment). 

 
3.2. Sensitivity analysis 
According to Sorooshian et al. (1995), sensitivity analysis evaluates the impact of changes in the 
model parameters, inputs or (initial) states on the model output of interest. The region around the 
best parameters estimates, in which the function value varies from the best function value by only a 
small value, is called the region of indifference. Sensitivity analysis can determine if there is 
dependence among parameters, if two or more parameters are simultaneously changed. Wagener 
and Kollat (2007) stated that any sensitivity analysis can be broken up into two components: 
investigation of the model parameter space, and a numerical or visual measure of the impacts of 
sampled parameters on the model output of interest. Various examples can be found in Beven 
(2009) and Matott et al. (2009). 
There are two types of sensitivity analysis: local sensitivity analysis and global sensitivity analysis. 
The former type of analysis aims to assess the impact of change in the parameter values within the 
local region of indifference on the model output. The local nature of this type of sensitivity analysis 
inherently limits its ability to identify all potentially relevant features of the response surface. 
However, local sensitivity analysis methods are useful when interested in the local region of 
indifference while saving computational effort. The nominal range and differential analysis methods 
(Helton and Davis, 2003) are two local sensitivity analysis methods.  
Alternatively, global sensitivity analysis attempts to explore the full parameter space within pre-
defined feasible parameter ranges (Tang et al., 2007). A statistic is used to measure the general 
variability of the objective function over the space, or a sub-dimension of the space. For example, 
this may be a measure of how the response surface deviates from a uniform value of the objective 
function, for instance using the Kolmogorov-Smirnov test (McIntyre et al., 2005a). The literature 
identifies a variety of global sensitivity analysis methods such as regional sensitivity analysis 
(Hornberger and Spear, 1981), variance based methods (Saltelli, 2002), regression based 
approached (Helton and Davis, 2002), and Bayesian sensitivity analysis (Freer et al., 1996; Vrugt 
and Robinson, 2007).  
Most sensitivity analyses consider only univariate or bivariate (first-order interactions) effects on 
model response. Despite the difficulty, especially where many factors are being considered, high-
order interactions could be analysed; however, additional computational effort and analytical 
complexity is required (Saltelli, 2002).  
A powerful extension of sensitivity analysis is to evaluate the dynamic sensitivity of model 
parameters, for example by evaluating sensitivity based on a moving window passed through the 
observed and simulated time-series. Such a procedure was developed by Wagener at al. (2004), 
known as DYNIA. This can be used to identify, for example, periods within an observed time-series 
for which specific parameters are sensitive, and hence the time-varying information content of data, 
and also can reveal tensions within a model structure – for example, where parameters tend to 
different optimal values at different points in time. 
 
4. UNCERTAINTY ESTIMATION 
Singh (1995) stated that uncertainty analysis is the means of calculating and representing the 
certainty with which the model results represent reality; hence uncertainty analysis examines the 
meta-effect of specific model uncertainties. The generation of quantitative measures of confidence in 
a model’s results is essential for providing guidance about the weight which should be given to the 
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model in decision making, and for indicating where the model may need to be improved. According 
to Melching and Singh (1995), confidence intervals are used to define ranges (e.g. 95%) within 
which the mean estimate will exist with specified probability. A second type of interval is the 
tolerance interval, which is defined as containing a certain proportion of the uncertain model 
estimates of an observation used in model calibration. 
Information on model uncertainty is available from the normal process of automatic calibration and 
verification of a selected hydrologic model for a given catchment, and usually requires small 
additional effort on the part of the hydrological modeller. If a measure of belief is associated with 
each set of predictions, the resulting uncertainty in the predictions can be estimated in a 
conceptually very simple way by weighting the predictions of all the acceptable models by their 
associated degree of belief (e.g. resulting to single- or multi-model prediction ensembles). Such an 
approach allows the non-linearity of the response of acceptable models using different parameter 
sets to be taken into account in prediction and uncertainty estimation (Beven, 2009). 
 
4.1. Sources of uncertainty 
Estimating the total uncertainty inherent to a hydrological model involves the identification and 
quantification of four sources: natural uncertainties, data uncertainties, model parameter 
uncertainties, and model structure uncertainties. 
 
4.1.1. Natural uncertainties 
This describes the uncertainty arising from natural random effects which includes the random 
temporal and spatial fluctuation that always affects the physical process of runoff generation 
(Melching and Singh, 1995; Singh, 1997). The extent to which we can describe natural uncertainties 
depends on the quality and the type of available data for describing the random effects (Guo et al., 
2004). For example, a dense rain gauge network or radar rainfall data, may allow much of the spatial 
randomness of rainfall to be observed and explicitly represented, reducing input uncertainty (and 
potentially therefore structural and parameter uncertainty). However, Beven (2009) stated that with 
hydrological systems it should not necessarily be expected that the consideration of additional data 
will decrease the uncertainty in the predictions. 
 
4.1.2. Data uncertainties 
The importance of uncertainty in the data (for instance, due to inadequate quality control) may 
depend on whether the model parameters are determined from calibration or from physical 
measurements and principles. For instance, Oudin et al., (2006) showed that systematic errors and 
uncertainties in rainfall data were transferred to the parameters of the model as bias in the 
parameters. However, the model performance using erroneous data and biased parameters may not 
greatly differ from that using true data and parameter values (Gourley and Vieux, 2006; Liu et al., 
2009). The reason is that the calibration provides an adjustment factor able to compensate for errors 
and bias.  
Rainfall spatial and temporal variability are basic reasons for uncertainty in precipitation data 
(Pechlivanidis et al., 2008; Vrugt et al., 2008c). Other model inputs such as evapotranspiration and 
catchment morphology data also affect uncertainty in model predictions (Dodov and Foufoula-
Georgiou, 2005; Gotzinger and Bardossy, 2008). In addition, uncertainty arises from the discrete-
time nature of the data, which provides no information about the variation within time steps which 
can affect parameter estimates (Kavetski and Clark, 2010a; 2010b). 
 
4.1.3. Model parameter uncertainties 
The use of limited data and uncertain data in calibration will lead to uncertainty in parameter 
estimates (McIntyre et al. 2002). For instance, Ratto et al. (2001) and Freer et al. (2004), among 
others, showed that significant bias in observed data will inevitably lead to biased parameter 
estimates. Furthermore, common practice is to encompass the effective model structure uncertainty 
in parameter uncertainty (Huang and Liang, 2006; Ajami et al., 2007; Pechlivanidis et al., 2010b). 
However, there are many difficulties in obtaining unique and “conceptually” realistic parameter 
values by model calibration as was discussed by Sorooshian and Gupta (1995): irrespective of data 
and model structure uncertainty, over-parameterised models will have fundamental parameter 
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equifinality (Beven and Freer, 2001). Through suitable uncertainty frameworks (see below), all these 
sources of uncertainty can be represented by joint distributions of parameters. 
  
4.1.4. Model structure uncertainties 
In hydrological applications, consideration of hydrological processes and their mathematical 
representations leads to the selection of a model structure. However, this structure is controlled by 
our understanding of the hydrological system, which is determined by the data available. Hence 
other unobserved processes are usually ignored, introducing uncertainties to modelling results. In 
general, uncertainties related to the model structure are identified through the model behaviour for 
runoff properties such as peak discharge, time to peak, runoff volume (Butts et al., 2004) or through 
time-series diagnostics (e.g. Wagener et al. 2003). The research community has recently 
emphasised the need for explicit identification of model structure uncertainty and diagnosis of 
differences in hydrological behaviour between model structures (Bai et al., 2009). Recent methods 
have focused on estimating the uncertain model structure via data assimilation frameworks (Liu and 
Gupta, 2007; Smith et al., 2008; Bulygina and Gupta, 2009; McIntyre et al., In Press). For instance, 
Fenicia et al. (2008) proposed a methodology to systematically update the model structure, 
progressively incorporating new hypotheses of catchment behaviour.   
 
4.2. Methods for uncertainty estimation 
There are numerous methods for assessing uncertainty in hydrological models. These can fall into 
one of three categories: analytical methods, computer algebra based (black box) methods, and 
sampling based methods.  
Analytical methods involve either the differentiation of model equations and solution of a set of 
auxiliary sensitivity equations, or the reformulation of the original model using stochastic 
algebraic/differential equations. Although analytical techniques are computationally efficient, severe 
assumptions are required as well as access to the underlying model equations and formulation 
(Isukapalli, 1999). Therefore they are not generally considered applicable. 
The most commonly used methods for uncertainty estimation are sampling based strategies which 
require no access to model equations or even the model code, and only require the model outputs 
associated to a set of input/parameter combinations. Uncertainty is performed by executing the 
model repeatedly for sets of parameter values sampled from a probability distribution; however, 
these methods are computationally expensive. 
Monte Carlo (MC) simulation is an extremely flexible and robust sampling based method widely used 
for uncertainty problems in hydrological applications (Beven, 2009). The uncertain parameters are 
described by probability distributions, and in the absence of information on joint probabilities, model 
parameters are assumed independent. Random values of each of the uncertain parameters are 
generated according to their respective probability distributions and the model is run using each 
random sample. Thereby, samples of model outputs are generated giving statistics (e.g. mean, 
standard deviation, skewness) and estimated probability distribution of the model output can be 
determined. 
The main disadvantage of MC methods is that a great number of model runs are often required to 
reliably represent all probable results (and adequately describe the response surface), especially 
when there are a number of random variables. Although the adequate number of samples is case 
specific, in general the greater the number of parameters and the greater the complexity of the 
response surface, the greater the number of simulations that are required. Replication of MC 
sampling is useful to check convergence (McIntyre and Al-Qurashi, 2009). 

A degree of computational efficiency can be accomplished through the use of efficient sampling 
methods which may include heuristic search procedures, or less informed approaches where 
segments of the probability distributions are split or stratified, and systematically explored (Jackson, 
2007). For example, the stratified Latin Hypercube sampling method (Helton and Davis, 2003) 
divides the range of probable values for each parameter into ordered segments of equal probability 
and combines the individual samples to produce the parameter sets.  
Many of the more promising heuristically guided sampling methods take advantage of Markov Chain 
Monte Carlo (MCMC) techniques (Kuczera and Parent, 1998; Smith et al., 2008). MCMC methods 
draw samples from probability distributions based on constructing a Markov chain that has the 
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desired distribution as its equilibrium distribution (Vrugt et al., 2009). Each state is visited the 
required number of times to satisfy the conditional distribution of the parameters given the data and 
this is achieved through satisfying appropriate conditions of reversibility (detailed balance) and 
ergodicity (Hastings, 1970). A challenge in MCMC methods is to determine how many steps are 
needed to converge to the stationary distribution within an acceptable error. The most common 
application is numerically calculating multi-dimensional integrals, where an ensemble of sets moves 
around randomly (yet the samples are correlated). Some random walk MCMC methods are the 
Metropolis-Hastings algorithm, Gibbs sampling, Slice sampling, and Multiple-try Metropolis (Beven, 
2009). 
The validity of performing Monte Carlo (or Markov Chain) analysis is somewhat obscured due to the 
practical difficulty of adequately specifying the model parameter distribution in the presence of 
noise/error in the data; an erroneous selection of the distribution could influence the model results 
(Kavetski et al., 2006). 
 
4.3. Uncertainty analysis frameworks in hydrological modelling 
Uncertainty in hydrological modelling must consider three aspects: understanding, quantification, 
and reduction of uncertainty. To address this objective, increasing research effort has been devoted 
to moving towards more robust uncertainty frameworks. Among the first developed frameworks, the 
Generalised Likelihood Uncertainty Estimation (GLUE) (Beven and Binley, 1992) employs MC 
simulation as a key component and uses a likelihood measure (e.g. inverse of the error variance) to 
measure degree of acceptability of models, and degree of equifinality between models. This aims to 
avoid over-conditioning towards a single parameter set and the exclusion of parts of the model 
parameter space that might provide acceptable fits to the data and be useful in prediction. The main 
shortcoming of the GLUE procedure is the dependency of the uncertainty estimation on the selection 
of the value separating acceptable (behavioural) and unacceptable (non-behavioural) simulations 
based on a cut-off threshold. In addition, most applications of GLUE use an informal likelihood 
function which does not formally account for the number of measurements used to condition the 
parameter estimates (Mantovan and Todini, 2006). Although this is arguably counter-intuitive, it is 
applied to avoid over-conditioning and thus ensure that parameter uncertainty reflects total 
uncertainty (Vrugt et al., 2008c). 
Other coherent methods for handling structure uncertainty are based on the concept of Bayesian 
model averaging (BMA) and multi-model ensemble method (MME). The BMA framework aims to 
jointly assess model structure and parameter uncertainties; however, it tends to be computationally 
demanding and also requires reliable prior information about model parameters. Instead of 
estimating the probability of each model as in a BMA framework, the goal of MME is to account for 
uncertainty by means of sampling from the output distributions of several different models (Liu and 
Gupta, 2007). Although several uncertainty analysis frameworks have been identified in the 
hydrological literature, (Thiemann et al., 2001; Vrugt et al., 2003; Wagener et al., 2004; Neuman, 
2003; Vrugt et al., 2005; McIntyre et al., 2005b), few of these methods completely address the 
critical aspects of uncertainty analysis (data error, structure error and output error) in an explicit and 
cohesive way (Liu and Gupta, 2007). 
Despite the challenges in dealing with multiple sources of uncertainty, few frameworks have been 
introduced to explicitly treat input, output and model structure uncertainty. Kavetski et al., (2006) 
introduced the BAyesian Total Error Analysis (BATEA) framework, which explicitly treats all sources 
of uncertainties and integrates these models into the posterior inference of model parameters and 
predictions. An Integrated Bayesian Uncertainty Estimator (IBUNE) framework was introduced by 
Ajami et al. (2007) combining Bayesian model combination techniques and a probabilistic parameter 
estimator algorithm to assess the integrated uncertainty propagation within a system.  
Other frameworks have been introduced to diagnose differences between hydrological model 
structures. Clark et al. (2008) presented a Framework for Understanding Structural Errors (FUSE) to 
diagnose differences in hydrological model structures. FUSE uses unique model structures, 
developed by combining components of existing hydrological models, to quantify structural 
uncertainty in model simulations. More recently, Bai et al. (2009) introduced a top-down framework 
for model evaluation and selection under uncertainty. Models of different complexity were evaluated 
in an ensemble framework to capture the observed data signature and its variability. The framework 
uses a fuzzy rule system to select model structures by combining performance measures. 
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5. RECENT DEVELOPMENTS IN HYDROLOGICAL MODELLING 
In the past few years, the hydrologic community has devoted a considerable effort to understand 
existing hydrological systems in pursuit of more accurate and more powerful models. Particular 
emphasis was given to predict hydrological responses in ungauged catchments and interior 
catchment points, and also to assess the impact of environmental change on catchment response. 
This section is therefore focused on reviewing three areas of recent developments in hydrological 
modelling: predicting hydrological responses in ungauged catchments, predicting responses at 
interior catchment points using distributed models, and finally assessing the impact of climate and 
land use change on hydrological prediction.  
 
5.1. Prediction in Ungauged Basins (PUBs) 
The scientific community has recently focussed substantial attention on ungauged or poorly gauged 
catchments, since hydrological prediction under these conditions is highly uncertain, but represents 
the majority of practical applications. The International Association of Hydrological Science (IAHS) 
initiated the Predictions in Ungauged Basins (PUB) programme as a scientific task for the current 
decade (2003-2012) to estimate and subsequently reduce predictive uncertainty (Sivapalan, 2003). 
PUB aspires to constrain the model uncertainty in ungauged catchments through development of 
improved ways to characterise the effects of heterogeneity, process understanding and through 
access to new data resources. To achieve this, PUB has been focusing on two research targets: 1) 
To examine and improve existing models in terms of their ability to predict in ungauged basins 
through appropriate measures of predictive uncertainty, and 2) To develop new, innovative models 
to capture space–time variability of hydrological processes for making predictions in ungauged 
basins, with a concomitant reduction of predictive uncertainty (see details in Sivapalan et al., 2003). 
Similarly to the PUB initiative, the Model Parameter Estimation Experiment (MOPEX) has brought 
about greater focus and coherence to hydrological research and practice. Results from the MOPEX 
have enhanced scientific insights on predicting hydrological responses in ungauged catchments. 
MOPEX is an international project led by the National Weather Service (NWS) in USA and aims to 
develop enhanced techniques for the estimation of parameters in hydrological models in ungauged 
catchments (Duan et al., 2006). The project’s objectives are to develop the necessary data sets from 
a wide range of climate regimes throughout the world to provide information about ungauged 
catchment responses, and also to validate a priori parameter estimation methodologies and evaluate 
potential improvement from model calibration (Huang and Liang, 2006). 
Both PUB and MOPEX groups have put substantial focus on model prediction uncertainty, since the 
latter is amplified when dealing with ungauged or poorly gauged catchments. For instance, 
imprecisely observed data, inaccuracies in catchment characteristics, imperfect model structures 
and parameter values could significantly affect the parameter estimation methodologies. However, at 
present it is arguably impossible to define the nature and extent of all these errors. Finally, as a 
result of the emphasis on understanding how to transfer information from one location to another 
and from gauged to ungauged catchment, the scientific initiatives have led to a sharper focus in 
research and have brought significant advancements and greater coherence in understanding the 
catchment response (Troch et al., 2008). 
 
5.2. Distributed hydrological modelling 
The use of distributed models has been encouraged due to the increasing availability of spatially 
distributed data sets at relatively fine scales (e.g. remote sensed data), information about physical 
catchment properties at small catchment scale [e.g. the Flood Estimation Handbook and Hydrology 
of Soil Type datasets (NERC, 1999)], and increasing availability of powerful computer resources. 
Distributed modelling has usually been driven by raingauge data; however, remote sensed products 
have been proven as an interesting alternative (Wheater, 2002). This type of data can give good 
areal estimates of rainfall at fine spatial and temporal resolutions, but lacks the quantitative accuracy 
of raingauge networks. To overcome this problem, remote sensed data are usually calibrated using 
point estimates of rainfall made by raingauge networks, as commonly implemented in many national 
ground-based radar-rainfall systems (Cole and Moore, 2008).  
Although the use of distributed models has been encouraged in hydrological applications for many 
different reasons, e.g. availability of spatial data, and their potential to simulate flow at interior 
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catchment points, there are issues that emerge such as scale and parameter estimation (Wooldridge 
et al., 2001), and calibration strategy (Carpenter and Georgakakos, 2006; Pechlivanidis et al., 
2010b). Particularly, as the number of model parameters increases with the degree of spatial 
discretisation, distributed models can easily become over-parameterised and subsequently ill-posed 
with respect to the available input-output data. Thus uncertainty in parameter estimates and hence 
uncertainty in model identification is a common problem (Orlandini and Rosso, 1998; Madsen et al., 
2002). In addition, there does not seem to be a clear trend in the literature supporting the superiority 
of distributed against lumped model spatial resolution in terms of accuracy of predicted flow at the 
catchment outlet. According to Beven (2009), several sources of uncertainty (i.e. parameter 
estimation, data uncertainty, model structure identifiability) could contribute to this result. 
Several studies have begun to examine the applicability of distributed models and investigate the 
potential of distributed models against their lumped counterparts. For example, NOAA’s National 
Weather Service (NWS) initiated the Distributed Model Intercomparison Project (DMIP) to compare 
simulated streamflows from 12 different distributed hydrological models with the lumped Sacramento 
Soil Moisture Accounting, SAC-SMA model (Smith et al., 2004). The DMIP project aimed to: 1) 
assess the advantages of applying distributed hydrological models in an operational forecasting 
environment, 2) assess the importance of spatial rainfall variability on runoff, and 3) evaluate the 
potential of distributed models to simulate runoff at interior catchment points.  
Results show that in cases where a distributed model is more efficient than a lumped model, this 
seems to be mainly due to the spatial distribution of rainfall, model parameters and channel routing 
(Ajami et al., 2004). However, it is not clear which factor is generally the most significant, since 
results depend on catchment hydrological characteristics. In addition, distributed model efficiency 
seems to depend on rainfall and model spatial resolution. Model performance could be improved 
when the model can capture the spatial information content of rainfall (e.g. McIntyre and Al-Qurashi, 
2009). However, this depends on how much information can be extracted when defining the spatial 
rainfall pattern (Carpenter and Georgakakos, 2004). Finally, several sources of error/uncertainty 
such as rainfall, model structure and model parameter uncertainty, should be addressed during 
robust distributed modelling to improve model performance (Georgakakos et al., 2004). In cases 
where a lumped model performs better than a distributed model, it has been found this is mainly due 
to spatial inconsistency of the model parameters (Ajami et al., 2004). 
  
5.3. Hydrological modelling under environmental change 
One of the main challenges facing hydrological science is to develop a holistic and quantitative 
understanding of the changing behaviour of hydrological systems. Predictions of hydrological 
responses need to allow for adaptive temporal evolution of soils, vegetation and climate, while the 
challenges emerge when extrapolating the model predictions to unmeasured conditions. The two 
biggest concerns have been the climate change and land use change. 
 
5.3.1. Climate change 
Global climate change is expected to have a strong impact on water resources on local (Buytaert et 
al., 2009), regional (Hagemann et al., 2009) and global scales (Alcamo and Henrichs, 2002). 
Changes in precipitation patterns affect water availability and runoff directly, while changes in 
temperature, radiation and humidity have an effect on evapotranspiration. As such, the scientific 
community has been focusing on predicting the potential effects of climate change on the 
hydrological response (see among others Vicuna and Dracup, 2007; Allen et al., 2010). 
Global atmospheric general circulation models (GCMs) have been developed to simulate the present 
climate and used to predict future climatic change. Although GCMs demonstrate significant skill at 
the continental and hemispheric spatial scales and incorporate a large proportion of the complexity 
of the global system, they are inherently unable to represent local subgrid-scale features and 
dynamics (Fowler et al., 2007). In addition, different GCM datasets produce varying and even 
contradicting results. Therefore a multi-model ensemble of GCMs is usually used to obtain a reliable 
impression of the climate change and provide uncertainty information (Sperna Weiland et al., 2010).  
To assess the variability in the hydrological response due to climate change, GCM-forced 
hydrological models are used (Nijssen et al., 2001; Prudhomme and Davies, 2008; Elshamy and 
Wheater, 2009). Although GCMs can predict variables such as wind, temperature and air pressure 
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quite well, precipitation and cloudiness are less well predicted, since these events occur at smaller 
spatial scale than GCM’s grid size (Xu, 1999). To narrow the gap between GCMs ability and 
hydrological needs, downscaling techniques have been developed to generate high-resolution 
meteorological inputs (Chun et al., 2009). 
The role of hydrological models as part of global climate models has become prominent. The fluxes 
of moisture and energy from land to atmosphere and from land to oceans, and the impacts of soil 
moisture on plant cover and CO2 fluxes, are recognised as essential components in global climate 
models. The need to represent land-atmosphere exchanges in a spatially distributed, continuous-
time manner has led to a resurgence of physics-based hydrological models (Scibek et al., 2007). 
While the motivation for such models is thus clear, the challenges – of identifying model structures 
and estimating parameters, and conducting uncertainty analysis at realistic computational cost – 
persist (Wilby and Harris, 2006; Serrat-Capdevila et al., 2007). 
 
5.3.2. Land use change 
Land use and land cover changes are linked to climate change, socio-economic drivers, fires and 
ecosystem dynamics. Quantification of the effect of land use change on the hydrological response of 
a catchment has long been an area of interest for the hydrological community, and renewed interest 
has come from the trend towards integrated management of land and water, together with the 
prospect of climate change impacts (Wheater and Evans, 2009). Several studies have shown that 
deforestation, urbanisation and other land use activities can significantly alter the seasonal and 
annual hydrological response within a catchment (Karvonen et al., 1999), however, distinguishing 
complex effects of land management change from catchment-scale analysis has proved extremely 
challenging (Beven et al., 2008). While statistical methods have been able to identify catchment-
scale effects of urbanisation (e.g. Institute of Hydrology (1999)), most of the knowledge on the effect 
of land use change on hydrological response comes from experimental catchment studies, and 
hydrological modelling (see among others Jackson et al., 2008); however, different results have 
been obtained, with some even opposing the findings of the others (O’Connell et al., 2004; 2007). 
A basic strategy for detection of change is for models to be calibrated to data from a reference 
period with little change in land use, and then applied to a subsequent period in which changes in 
land use have been identified (see Schreider et al., 2002). Trend analysis can then be implemented 
to analyse the bias between modelled and observed data and hence to investigate changes in the 
hydrological response that might arise due to the identified land use changes (Lorup et al., 1998). 
However, in practice this is problematic, due to the effects of a heterogeneous mosaic of land use in 
most catchments, limited information on historical changes in land management practices, and the 
confounding effects of data noise and climatic variability (Beven et al., 2008). Alternatively, transfer 
functions approaches have recently been used to empirically identify land use signals when moving 
from one period to another, and from one catchment to another (e.g. Beven et al., 2008; McIntyre 
and Marshall, 2010).  
Alternatively, various simulation approaches have been considered to assess the impact of land use 
change using hydrological models. The most rational way is through the implementation of 
distributed physically-based models in which the land use characteristics are explicitly represented 
and all the processes influenced by them are modelled using parameters that can physically be 
estimated a priori (Parkin et al., 1996). However, this approach usually requires spatial data and 
computational effort, which increases further as the catchment scale increases (Fohrer et al., 2001). 
One way to address these limitations is the use of detailed physics-based modelling to address 
local-scale changes, and then the use of ‘meta-models’ or emulation modelling, to capture the 
response of detailed models in a simple computationally-efficient formulation for larger scale 
application (Jackson et al., 2008). Current UK research is also exploring the extent to which, in the 
absence of local data, surrogate sites can be used to condition physics-based models for upland 
peatland management (Ballard et al., In Press).  
A different approach uses semi-distributed conceptual hydrological models (see among others Brath 
et al., 2003). Based on this approach, model parameters are estimated a priori based on observed 
data or modelling experience. However, model calibration still might be needed to adjust some of the 
parameters. This makes it difficult to associate the calibrated parameters with the land use 
characteristics, and to quantify uncertainty in simulation results. Alternatively, parameter 
regionalisation of conceptual hydrological models has been used, in which the impact of land use 
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change is estimated by recalculating the model parameters and applying the model to other land use 
scenarios (De Roo et al., 2001; Wooldridge et al., 2001; Hundecha and Bardossy, 2004). The 
recalculation of parameters for future conditions is an extension of the ungauged catchment 
problem, but for non-stationary catchment conditions, and hence recently the applicability of 
regionalisation methods has been explored to address the land use change problem (Bulygina et al., 
2009; In Press). 
 
6. SUMMARY AND DISCUSSION 
Hydrological models are important for water resources planning, development and management. 
Their selection is usually based on data availability, spatial representation, computational cost, and 
model robustness. The current review followed the classification system outlined in Wheater et al. 
(1993) and classifies hydrological models based on their structure (metric, conceptual, physics-
based, and hybrid), spatial representation (lumped, semi-distributed and distributed), process 
(deterministic and stochastic), time-scale and space-scale.  
Calibration is an integral part of the modelling process, since it is in practice impossible to measure 
all hydrological properties of a system. In general, model calibration aims to ensure that model 
components mimic hydrological processes and parameters retain their physical meaning; however 
results are influenced by multiple sources of uncertainty (uncertainty in the data, model parameters 
and model structure). The problem of equifinality, where different parameter sets and model 
structures can yield equally “good” results, poses significant constraints to model development. It is 
therefore important to develop models that can better exploit the information content of the available 
data. Wheater (2002) stated that this requires flexible and parsimonious (in terms of number of 
parameters) model structures that are able to adapt to location specific information content. 
However, due to data uncertainties, invariably substantial equifinality could remain. 
It is broadly recognised that proper quantification and representation of uncertainty in hydrological 
modelling is essential for decision making; however, there is still the challenge of developing 
rigorous methods. Sampling based methods such as “classic” Monte Carlo, GLUE and Markov 
Chain Monte Carlo in theory allow robust analysis of the complexity of a response surface; however, 
these methods can be prohibitively computationally expensive. GLUE is usually combined with an 
informal likelihood measure to condition the parameter space while avoiding over-conditioning; 
attempting to ensure that parameter uncertainty reflects total uncertainty. MCMC is particularly 
useful where distributions must be partially defined or restricted by output data. 
Considering any single source of uncertainty (i.e. structural, parameter, and data errors) may lead to 
misleading uncertainty predictions in the model output: it is therefore important to consider all types 
of errors in a comprehensive, explicit and cohesive way to reduce bias and uncertainty in the final 
prediction. Several frameworks (e.g., among others BATEA, IBUNE, FUSE) have been introduced to 
assess the impact of data and model structure uncertainty on streamflow simulations; however, 
further effort to advance scientific understanding is required. According to Liu and Gupta (2007), 
uncertainty in hydrological predictions could be reduced by: 1) acquiring more informative and higher 
quality data both in space and time, 2) understanding better the physical processes and improve 
their representation in the hydrological models, and 3) developing techniques to extract and 
assimilate information from the available data via the model identification and prediction processes.  

Recent research highlights the importance of moving from model calibration to model diagnostic 
model evaluation to more robustly identify where the model fails and which model aspects need 
improvement (Gupta et al., 2008). Multi-objective optimisation algorithms highlight trade-offs 
between different objectives which may be considered as symptoms of model inadequacy and point 
in the direction of model improvement. Additional reduction of uncertainty in model prediction 
involves improvement of data quality, and development of approaches that can quantify uncertainty 
in the various stages of model development. 
The scientific community has been focusing on predicting hydrological responses in ungauged or 
poorly gauged catchments, and interior catchment points. Recent initiatives, such as PUB and 
MOPEX, have highlighted barriers to prediction at ungauged locations and under environmental 
change (Troch et al., 2008). Despite the availability of spatial data (e.g. remote sensed data, 
catchment physical properties), the theoretical potential of distributed models has not been realised. 
Robust strategies for distributed model calibration and error diagnosis, including the ability to 
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account for uncertainty in spatially distributed inputs, and ability to maximise the information content 
of observed hydrological response, should be developed. 
Moreover, prediction under environmental change makes the task of hydrological modelling more 
challenging. Studies show that the impact of climate and land use change in hydrology could be 
significant. GCM-forced hydrological models can quantify the potential impact of climate change on 
the hydrological response; however, approaches for assessment of uncertainty in climate prediction 
scenarios, as well as in downscaling procedures should be improved. Uncertainty is a key issue 
affecting the results from land use change studies, related to our limited knowledge of how large 
scale changes will affect small scale processes, and limited ability to upscale small scale models to 
more relevant large scale fluxes. 
Overall, this paper reviews current methodologies and challenges in hydrological modelling. As a 
conclusion, we propose that new predictive approaches based on a combination of current and new 
data assimilation and modelling ideas, using existing and new remote-sensed data sets, are needed. 
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