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ABSTRACT 
Detailed meteorological data required for the equation of FAO-56 Penman-Monteith (P-M) method 
that was adopted by Food and Agriculture Organization (FAO) as a standard method in estimating 
reference evapotranspiration (ETo) are not often available, especially in developing countries. The 
Hargreaves equation (HG) has been successfully used in some locations to estimate ETo where 
sufficient data were not available to use the P-M method. This paper investigates the potential of two 
Artificial Neural Network (ANN) architectures, the multilayer perceptron architecture, in which a back-
propagation algorithm (BPANN) is used, and the cascade correlation architecture (CCANN), in which 
Kalman’s learning rule is embedded in modeling the daily ETo with minimal meteorological data. An 
overview of the features of ANNs and traditional methods such as P-M and HG is presented, and the 
advantages and limitations of each method are discussed. Daily meteorological data from three 
automatic weather stations located in Greece were used to optimize and test the different models. 
The exponent value of the HG equation was locally optimized, and an adjusted HGadj equation was 
used. The comparisons were based on error statistical techniques using P-M daily ETo values as 
reference. According to the results obtained, it was found that taking into account only the mean, 
maximum and minimum air temperatures, the selected ANN models markedly improved the daily 
ETo estimates and provided unbiased predictions and systematically better accuracy compared with 
the HGadj equation. The results also show that the CCANN model performed better than the 
BPANN model at all stations. 
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INTRODUCTION 
Knowledge of evapotranspiration, which involves the evaporation of water from land surfaces and 
transpiration by vegetation, is essential for estimating irrigation water requirements (Allen et al., 
1998). Methods for estimating evapotranspiration are based on micrometeorological techniques 
(aerodynamic method, eddy covariance, etc.) or on the use of lysimeters. The methods for 
estimating evapotranspiration require complex and very costly instruments and are generally 
recommended only for specific research purposes (Allen et al., 1998). The evapotranspiration rate 
from a reference crop is called reference evapotranspiration (ETo) and expresses the evaporating 
power of the atmosphere at a specific location and time of the year (Allen et al., 1998). The FAO-56 
Penman-Monteith (P-M) equation (Allen et al., 1998) was adopted by FAO as a standard method for 
estimating daily ETo, as it provides more consistent ETo estimates and has been shown to perform 
better than other ETo methods. However, the detailed meteorological data required by the P-M 
equation are not often available, especially in developing countries. Under such conditions, 
simplified or empirical equations, which require less meteorological data, should be used. 
Allen et al. (1998) have proposed that when sufficient or reliable data to apply the P-M equation are 
not available, then the Hargreaves equation (HG) can be used. The HG equation (Hargreaves et al., 
1985) requires only extraterrestrial radiation and daily mean, maximum and minimum air 
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temperature, which are usually available at most weather stations worldwide (Droogers and Allen, 
2002). Extraterrestrial radiation can be calculated for a certain day and location by using the 
estimated daylight hours according to certain formulas (Allen et al., 1998). Consequently, only 
minimum and maximum temperatures are the parameters that require observation. This method 
works best for weekly or longer predictions, although some accurate ETo daily estimations have 
been reported in the literature (Hargreaves and Allen, 2003; Vanderlinden et al., 2004). Several 
studies have attempted to improve the accuracy of the Hargreaves equation (Samani, 2000; 
Droogers and Allen, 2002; Vanderliden et al., 2004; Trajkovic, 2007). Droogers and Allen (2002) 
fitting the two parameters of HG equation using the P-M derived ETo values did not improve 
estimates by the HG method substantially. Samani (2000) proposed a relationship between one 
coefficient and the daily temperature range, but Vanderlinden et al. (2004) found that adjusting the 
estimates with the Samani method does not produce more accurate results. They proposed a new 
relationship between the adjusted Hargreaves coefficient and the rate of the average temperature to 
the average daily temperature range in the region of Andalusia (S. Spain) for the regional adjustment 
of the Hargreaves coefficient. Trajkovic (2007) presented an adjusted Hargreaves equation with the 
exponent value locally optimized for the Western Balkans area. The HG equation adjusted above 
gave more accurate results. In this paper, the exponent value of the HG equation was locally 
optimized and the adjusted (HGadj) equation was used. 
In recent years, Artificial Neural Network (ANN) models have become extremely popular for 
prediction and forecasting in a number of areas, including finance, power generation, medicine, 
water resources and environmental science (Benvenuto and Marani, 2000; Maier and Dandy, 2000; 
Loukas et al., 2002; Lekkas et al., 2004; Wang et al., 2009). The ANN models are quite appropriate 
for the simulation of nonlinear processes, which is the case for the evapotranspiration process. 
Several researchers have used ANN models to estimate or forecast evapotranspiration as a 
function of climatic data (Kumar et al., 2002; 2008; 2009; Sudheer et al., 2003; Trajkovic et al., 
2003; Trajkovic, 2005; 2007; Keskin and Terzi, 2006; Khoob, 2008; Kim and Kim, 2008; Kisi, 
2006; 2007; 2008; Landeras et al., 2009). It is important to note that in most of the above papers, 
the ANNs are considered as back-propagation artificial neural networks (BPANN). Theoretically, 
feed-forward neural networks can approximate any nonlinear function, and thus the back-
propagation algorithms are popular for training feed-forward neural networks. However, the BPANN 
models have disadvantages, such as (a) a dependence on the choice of the initial weights and 
number of hidden neurons, (b) very slow convergence rapids, (c) a sensitivity to noise in the training 
data sets and (d) a poor generalization for complicated nonlinear functions. In this paper, in order to 
evaluate the potential of BPANN models to estimate the daily ETo with minimal meteorological data 
and in an effort to test an alternative procedure in the hopes of overcoming some of the 
disadvantages of the BPANN models, a Cascade Correlation Artificial Neural Network (CCANN) 
model in which Kalman’s learning rule is embedded was developed. To the knowledge of the 
authors, no work has been reported in the literature that has applied the CCANN model to ETo 
estimation.  
The objective of this study was to test BPANN and CCANN models for estimating daily ETo with 
minimum meteorological data as a function of the mean, maximum and minimum air temperatures 
and extraterrestrial radiation and finally to compare the adjusted HGadj equation with the ANN 
models. The comparisons were based on error statistical techniques using P-M daily ETo values as 
a reference.  

 
MATERIALS AND METHODS 
Study area and meteorological data sets 
The data used for training and validating the ANNs were obtained from daily meteorological data 
measured in an Automatic Weather Station (AWS) located at Piperia station in Northern Greece. 
Additionally, this study also evaluated the adoption of the developed BPANN and CCANN models 
with minimal meteorological data at Piperia station as models for estimating daily ΕΤο in two other 
AWSs located at Gomati and at Larisa, in Greece. The three AWSs are located in agricultural areas 
(Figure 1). The meteorological data measured and used in this study are: mean daily air temperature 
(Tmean); maximum and minimum air temperature (Tmax and Tmin); mean daily relative humidity (RH); 
mean daily wind speed (u); and daily net radiation (Rn). 
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Figure 1. Map of meteorological stations 

 
The FAO-56 Penman-Monteith and Hargreaves methods 
In this study, the performance of the HGadj, BPANN and CCANN models was compared to the 
conventional FAO-56 Penman–Monteith (P-M) method. This method is the standard procedure when 
there is no measured lysimeter data (Allen et al., 1998; Alexandris et al., 2006; Georgiou and 
Papamichail, 2008). Although in practice the best way to test the performance of the above-
mentioned methods would be to compare their performances against the lysimeter-measured data, 
this data set is not available for the study area. According to Allen et al. (1998), the P-M method is 
summarized by the following equation: 

[ ]−
⎡ ⎤= − + − + +⎢ ⎥+⎣ ⎦

P M n 2 s a 2
900ET 0.408∆(R G) γ u (e e ) ∆ γ(1 0.34u )

T 273
              (1) 

where ETP-M is the reference evapotranspiration (mm d–1), Rn is the daily net radiation (MJ m-2 d–1), 
G is the soil heat flux (MJ m-2d–1), T is the average daily air temperature at a height of 2 m (oC), u2 is 
the daily mean of the wind speed at a height of 2 m (m s–1), es is the saturation vapor pressure 
(kPa), ea is the actual vapor pressure (kPa), ∆ is the slope of the saturation vapor pressure versus 
the air temperature curve (kPa οC–1), and γ is the psychrometric constant (kPa οC–1). All parameters 
were calculated using equations provided by Allen et al. (1998). The soil heat flux (G) was assumed 
to be zero over the calculation time step period (24 hours) (Allen et al., 2005). 
The Hargreaves equation (Hargreaves and Samani, 1985; Hargreaves and Allen, 2003) can be 
written as: 

= + − b
HG a mean max minET 0.0023R (T 17.8)(T T )                           (2) 

where ETHG is the computed reference evapotranspiration by the HG method (mm d–1), Ra is the 
water equivalent of the extraterrestrial radiation (mm d–1) computed according to Allen et al. (1998), 
Tmax and Tmin are the daily maximum and minimum air temperature (οC), Tmean is the daily mean air 
temperature (οC) computed as the average of Tmax and Tmin and b is an empirical coefficient set to 
0.5 by definition. In this study, the b coefficient of the HG model (Eq. 2) was estimated by regression 
analysis across the calibration data set (1994-1998) at Piperia station, and the performance of the 
locally optimized HG model was evaluated by the validation data set (2005) at the three stations. 
Finally, the locally adjusted (ETHGadj) equation with b equal to 0.39899 was used instead of the HG 
equation with b equal to 0.5. The locally adjusted (ETHGadj) equation can be written as: 

= + − 0.39899
HGadj a mean max minET 0.0023R (T 17.8)(T T )                         (3) 

 
Artificial neural networks methodology 
Back-propagation is the most popular algorithm for training ANNs. It is essentially a gradient descent 
technique that minimizes the network error function. The back-propagation artificial neural network 
models (BPANN) have already been described and are used widely (Fausett, 1994; Haykin, 1994). 
In this paper, standard back-propagation learning was used. This algorithm makes use of two 
parameters that control the rate at which learning takes place. The first is a momentum term, which 
is generally used to accelerate the convergence and to avoid local minima. The second is the 
learning rate. The effectiveness and convergence of training depends significantly on the value of 
the learning rate. If it is too high, then the search may miss a valley on the error surface. In contrast, 
if it is too small, the convergence will be very slow. The number of neurons in the hidden layer of the 
neural network is finalized after a trial and error procedure using different combinations of learning 
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rates and momentum factors. Each combination of a learning rate and momentum factor is tested for 
different numbers of hidden neurons. 
Fahlman and Lebiere (1990) proposed the Cascade Correlation algorithm to deal with several 
perceived problems with the popular back-propagation algorithm. The Cascade Correlation has 
several advantages over existing algorithms; it learns very quickly, the network determines its own 
size and topology, and it requires no back-propagation of error signals through the connections of 
the network. It has also been shown to perform well experimentally (Drago and Ridella, 1994; 
Prechelt, 1997). The Cascade Correlation Artificial Neural Network (CCANN) is a feed-forward type 
of network, which is a supervised algorithm for multilayer feed-forward ANNs. The cascade 
correlation algorithm starts the training without any hidden nodes and trains the network, iteratively 
repeating the process for an increasing number of nodes until no further improvement in network 
performance can be obtained. Because of its dynamic expansion that continues until the problem is 
successfully learned, the cascade correlation algorithm automatically creates a suitable network 
architecture for a given problem (Karunanithi et al., 1994). By using cascade correlation, the neural 
network designer is relieved of the task of having to guess at the configuration of the architecture for 
a particular problem. Furthermore, studies have shown cascade correlation to be a faster algorithm 
and to be better able to converge (Fahlman and Lebiere, 1990; Drago and Ridella, 1994). 
Kalman’s learning algorithm (Demuth and Beale, 2001; Grewal and Andrews, 2001) was used. The 
Kalman learning rule seems to be a key feature of the ANN. This learning rule is acceptable for 
forecasting the type of problems where the number of inputs is not too large (Grewal and Andrews, 
2001). A Kalman filter (Brown and Hwang, 1992; Rivals and Personnaz, 1998; Demuth and Beale, 
2001; Grewal and Andrews, 2001; Li et al., 2002) attempts to estimate the state of a system that can 
be modeled as a linear system driven by additive white Gaussian noise and where the available 
measurements are linear combinations of the system states that are corrupted by additive white 
Gaussian noise (Li et al., 2002). A detailed description of the Cascade Correlation architecture 
where Kalman’s learning rule is embedded can be found in  Diamantopoulou (2010). The first 
important parameter that controls the Kalman learning rule is the hidden noise factor (HNF). The 
square of its value is used to initialize the measurement noise covariance matrix for training hidden 
candidate weights. This factor has a significant effect on the ability of the network to generalize, as it 
tends to inhibit the large weights and complexity of the model. The second parameter is the value of 
the maximum variance (MV). This value is used to initialize the diagonal value of the error 
covariance matrix for the Kalman estimates of the weights. Additionally, the work of Rivals and 
Personnaz (1998) analyzes the cases of the different initial values for the Kalman Filter training 
algorithm and provides advice on how to choose the initial values of the system error covariance and 
process noise error in the Kalman recursion.  
The choice of the activation function was also investigated. The activation or transfer function for 
neurons in the hidden layer used in this paper is the hyperbolic tangent function (Fausett, 1994). 
 
Performance evaluation  
A model’s performance was evaluated using a variety of standard statistical indexes including the 
correlation coefficient (R), the mean absolute error (MAE) and the root mean square error (RMSE). 
A high R, a low MAE and a low RMSE imply good model performance and vice versa. 
In addition, a model’s performance was evaluated using the following criteria: The relative error (RE) 
(Diamantopoulou et al., 2009) is a proportional measure of the error and provides information about 
the predictive capability of the model. A low RE implies good model performance and vice versa. 
The signal-to-noise ratio (SNR) (Diamantopoulou et al., 2009) involves the standard error of the 
estimated and the standard deviation of the observed values of the output variable. A low SNR 
implies good model performance and vice versa. 
The performance index (C) (Willmott, 1981) was used to quantify the adjustment level between 
observed and estimated values. A high C implies good model performance and vice versa. 
Furthermore, to evaluate the models and to make unbiased estimations, the bias % as the mean 
percentage estimation errors derived by the ANN models and HGadj method for all data sets and all 
stations, the nonparametric tolerance intervals and the mean square bias of the percentage errors 
(Msb%), were calculated. Taking into account the fact that if the errors in absolute terms are 
normally distributed, then the percent errors may not be (Reynolds, 1984), the 5% trimmed mean 



22  DIAMANTOPOULOU et al. 

 

and the jackknife sample standard deviation of the error were used as more robust location 
estimators (Hoaglin et al., 1985). 
In order to provide limits to contain a specified proportion of the percentage estimation error 
distribution over the long term, the nonparametric tolerance intervals were calculated as follows: 
Bias% ± nonparametric tolerance length. The tolerance intervals provide the range that will contain 
95% of the distribution of the percentage estimation errors with 95% confidence.  

 
RESULTS AND DISCUSSION 
Estimating daily ETo by the P-M and HGadj methods  
The P-M and HGadj methods were used to estimate daily ETo (mm d-1) at Piperia station in years 
1994-1998 and in year 2005 and at Gomati and Larisa stations in year 2005. The related information 
from three weather stations and the average daily values of the meteorological parameters (Tmax, 
Tmin, Tmean) and the averaged daily sum value of ETo computed by P-M equation are given in Table 1.  
 

Table 1. Average station daily values for meteorological parameters  
(ETo(P-M) is the averaged daily sum value computed by P-M equation) 

Station (Lat., Long., Alt.) Period Tmax 
(oC) 

Tmin 
(oC) 

Tmean 
(oC) 

ETo (P-M) 
(mm d-1) 

Piperia ( 40o58΄,22o02΄, 160 m) (1994-98)* 20.87 7.78 14.33 2.55 
Piperia ( 40o58΄,22o02΄, 160 m) (2005)** 21.27 7.56 14.42 2.62 
Gomati (40o24΄,23o43΄,100 m) (2005)** 19.61 9.78 14.70 2.66 
Larisa (39o39΄,22o25΄,73.6 m) (2005)** 21.58 8.79 15.19 2.52 

*Calibration period, ** Validation period 
 
The agreement between ETo (HGadj) and ETo(P-M) was good (Table 2). The high values of the 
correlation coefficients (R>0.91) at all stations reveal a reliable performance of the HGadj method, 
but the HGadj method at the Piperia and Gomati stations was underestimated when ETo was high. 
Considering all stations, for the validation year, the values of R, MAE, RMSE, RE, SRN and C 
statistics for the HGadj method (Table 2) ranged from 0.920 to 0.958, 0.415 mm d–1 to 0.526 mm d–1, 
0.553 mm d–1 to 0.691 mm d–1, 0.208 to 0.299, 0.435 to 0.511, and 0.870 to 0.903, respectively. The 
MAE yields a more balanced perspective of the goodness-of-fit at moderate ETo values, whereas the 
RMSE measures the goodness-of-fit relevant to high ETo values. The above results indicate that the 
statistics of the HGadj method validation performance were sufficient. 

 
Table 2. Statistics of HGadj method performance at all stations 

Station Period Patte-
rns 

R MAE 
(mm d-1) 

RMSE 
(mm d-1) 

RE SNR C 

Piperia 1994-98 1826 0.914 0.461 0.725 0.284 0.405 0.872 
Piperia 2005 365 0.920 0.478 0.691 0.266 0.500 0.870 
Gomati 2005 365 0.958 0.526 0.690 0.299 0.511 0.883 
Larisa 2005 365 0.947 0.415 0.553 0.208 0.435 0.903 

 
Estimating daily ETo by the ANN models  
In this paper, BPANN and CCANN models were developed for estimating the daily ETo at Piperia 
station by using as inputs the meteorological data which were used by the HGadj method. These 
inputs include the daily mean, maximum and minimum air temperature (oC) and the daily 
extraterrestrial radiation (MJ m-2 d-1). The last variable was calculated as a function of the local 
latitude and Julian day, according to the equations presented by Allen et al. (1998). Thus, the 
proposed models require only daily values of air temperatures to estimate the ETo. The single output 
is the daily ETo estimated by the P-M method with all meteorological data required by this method. In 
order to evaluate the relative importance of the four variables used as inputs for the construction of 
the BPANN and CCANN models, a sensitivity analysis was conducted for both architectures. In the 
sensitivity analysis, the calibration data set (1994-98) at Piperia station was submitted to the network 
repeatedly, with each variable in turn treated as missing, and the resulting network error was 
recorded. Finally, the ratio between the error with an omission of each variable and the error 
obtained using all variables was calculated, and it was found to be much higher than one, for all 
variables, meaning that every variable contributes significantly to the estimation of the output values.  
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The ANN models were developed by using the daily data from 1994-1998 at Piperia station as a 
calibration period and from 2005 at the three stations as a validation period (Figure 1, Table 1). 
To avoid overfitting in ANN model building, the K=10 fold cross-validation resampling technique was 
used. The advantage of this method is that all of the examples in the calibration data set are 
eventually used for both training and testing. Following this method, the calibration data set was 
randomly partitioned into training (the 90% of the calibration data) and testing (the remaining 10% of 
the calibration data) data sets. After the selection of the architecture and the training parameters, the 
model was trained using the training data set. The model was evaluated using the test data set. The 
above procedure was repeated for each K=10 experiments, using K-1=9 folds for training and the 
remaining one for testing. The entire procedure was repeated many times using different training 
parameters. Finally, training was stopped when the generalization ability reached a maximum. This 
ability was measured by the average error rate of the cross-validation examples.  
The multilayer perceptron architecture using the back-propagation algorithm was used to train the 
BPANN models. The back-propagation learning rate and the momentum factor are two parameters 
that must be defined for back-propagation training. The learning rate and momentum factor values 
were finalized after examining different combinations. Each combination of learning rate and 
momentum factor was examined for different numbers of hidden neurons. The best values for the 
learning rate and the momentum factor were 0.1 and 0.3, respectively. The number of nodes in the 
hidden layer of the neural network that was used for various training models were 1, 2, 3,…11. The 
network has been trained for 2000 epochs, as there was very negligible reduction of the mean 
square error (MSE) and the RMSE values after 2000 epochs. Nine hidden nodes were chosen in the 
hidden layer for the trained model because the lowest residual error (RMSE) for the training set was 
obtained.  
Different CCANN models were tested to determine the optimum number of hidden layers and the 
number of nodes in each. The architecture of the best CCANN model for forecasting the daily ETo at 
Piperia station is composed of one input layer with four input variables, which are the daily mean, 
maximum and minimum air temperature (oC) and the daily extraterrestrial radiation (MJ m-2 d-1), one 
hidden layer with eight nodes and one output layer with one output variable. The number of nodes in 
this one hidden layer was determined based on the maximum value of the correlation coefficient. 
The output ETo represents the daily ETo estimated by the P-M method. 
The values of the hidden noise factor and the maximum variance for the Kalman learning rule were 
decided after examining different combinations. The hidden noise factor was used as a 
regularization term. The effect of a high hidden noise factor value is to reduce the dependence of 
learning from individual records. General trends in the data are reinforced. Hidden noise factor HNF 
= 1.0 (this value is set for clean data), 2.0, 5.0, 10.0, 20.0, 30.0, 40.0 and 50.0 (this value is set for 
very noisy data) and the maximum variance MV = 500, 1000, 2000, 3000, 4000 and 5000, were 
considered to find the best combinations. For the training of the CCANN models the best 
combination of the hidden noise factor value and the maximum variance value was equal to 5.0 and 
2000, respectively. 
After the training process, the adoption of the developed BPANN and CCANN models with minimum 
meteorological data at Piperia station for the year 2005 and in two other weather stations, which are 
located at Gomati and Larisa (Figure 1), was also investigated. The best BPANN and CCANN 
models and the statistics of their performances for all data sets including the correlation coefficient 
(R), the mean absolute error (MAE), the root mean square error (RMSE), the relative error (RE), the 
signal–to-noise ratio (SNR) and the performance index (C), are given in Table 3. The notation 
(ETo/CCANN: 4-8-1) (Table 3) means that the best architecture of the specific CCANN model is 
composed of one input layer with four input variables, one hidden layer with eight nodes and one 
output layer with one output variable. Corresponding notation is given for the selected BPANN model 
(Table 3). 
For all stations (Table 3), the values of R, MAE, RMSE, RE, SRN and C statistics for the BPANN 
model validation performance ranged from 0.939 to 0.956, 0.398 mm d–1 to 0.444 mm d–1, 0.549 mm 
d–1 to 0.609 mm d–1, 0.202 to 0.238, 0.356 to 0.375, and 0.914 to 0.929, respectively. In addition, for 
all stations (Table 3), the values of R, MAE, RMSE, RE, SRN and C statistics for the CCANN model 
validation performance ranged from 0.949 to 0.957, 0.411 mm d–1 to 0.437 mm d–1, 0.545 mm d–1 to 
0.581 mm d–1, 0.203 to 0.231, 0.349 to 0.351, and 0.923 to 0.933, respectively. 
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Table 3. Statistics of the BPANN and CCANN models performance, at all stations 
Station Period Patterns Statistics of the models performance 
   

R 
MAE 

(mm d-1) 
RMSE 

(mm d-1) RE SNR C 

   ETO/BPANN 4-9-1 

Piperia (1994-98) 1826 0.934 0.420 0.663 0.278 0.377 0.901 
 (2005) 365 0.939 0.398 0.609 0.238 0.375 0.914 
Gomati (2005) 365 0.945 0.444 0.592 0.233 0.361 0.918 
Larisa (2005) 365 0.956 0.414 0.549 0.202 0.356 0.929 

   ETO/CCANN 4-8-1 

Piperia (1994-98) 1826 0.943 0.406 0.600 0.234 0.340 0.916 
 (2005) 365 0.949 0.411 0.573 0.222 0.349 0.930 
Gomati (2005) 365 0.949 0.437 0.581 0.231 0.351 0.923 
Larisa (2005) 365 0.957 0.415 0.545 0.203 0.350 0.933 
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Figure 2. Daily ETo values estimated by the BPANN model (a,b,c,d) and the CCANN model (e,f,g,h) 
versus the corresponding daily ETo values computed by the P-M method, at all stations 
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From the above results (Table 3), we can consider that the statistical values of the CCANN model 
validation performance, which used data from all stations, were better than those of the BPANN 
model validation performance. The values of the correlation coefficient (R) and the performance 
index (C) were very high; the highest for all data sets for the CCANN model (Table 3) meaning that 
the ET0 values estimated by the CCANN model were closely related to those computed by the P-M 
method. In addition, according to the predictive ability of the models (Table 3), the error values 
(RMSE and RE) and the signal-to-noise ratio values (SRN) suggested that the CCANN model was 
superior to the BPANN model for all different data sets. Because the validation data sets at Gomati 
and Larisa stations were not used by the selected BPANN and CCANN models, the accurate 
predictions of these data sets (Table 3) demonstrated the adequacy and the potential of both 
selected models for estimating the daily ETo at stations that are located beyond the station in which 
the calibration data were measured. Furthermore, according to the statistical values of the BPANN 
model (Table 3) and the HGadj method (Table 2), the statistical values of the BPANN model are 
better than those of the HGadj method.  
The daily ETo values estimated by the P-M method at Piperia station for the calibration years and the 
validation year and at Gomati and Larisa stations for the validation year were compared with the 
corresponding values estimated by the selected BPANN and CCANN models (Table 3). The 
comparisons are shown in Figure 2. 
Figure 2 shows that the daily ETo values estimated by both the BPANN and CCANN models during 
the calibration and validation years at all stations match well and the effectiveness of these models 
is clear, with the daily ETo values estimated by the CCANN model being better than those by the 
BPANN model.  
To evaluate of the models and make unbiased estimations, the bias (%) as the mean percentage of 
estimation errors derived by all different estimating models was calculated and is provided in Table 
4. Both normal probability plots and a Lilliefors statistical test (Norusis, 2000) tested the normality of 
the percentage errors of all estimation methods. This exploration showed a significant departure 
from normality (a=0.05) for all cases. For this reason, the 5% standard deviation of the errors of the 
trimmed mean and the jackknife sample as more robust location estimators (Hoaglin et al. 1985), 
were used to estimate tolerance interval limits (Table 4).  
 

Table 4. Bias (%), nonparametric tolerance interval limits and mean square bias  
of the percentage errors (Msb%) of the daily ETo values estimated by the HGadj method and 

the BPANN and CCANN models, at all stations 
Nonparametric tolerance 

interval Station Period Model 1Bias (%) 
Lower limit Upper limit 

Msb (%) 

Piperia 1994-98 
HGadj 

BPANN 
CCANN 

-10.694* 
6.692* 
-5.510* 

-63.84 
-33.94 
-49.24 

42.45 
47.32 
63.84 

756.12 
474.44 
464.74 

Piperia  2005 
HGadj 

BPANN 
CCANN 

-8.159* 
-3.758* 
-0.339* 

-64.66 
-55.12 
-50.25 

48.34 
47.60 
49.57 

791.90 
613.47 
566.09 

Gomati 2005 
HGadj 

BPANN 
CCANN 

3.986* 
-0.074* 
3.314* 

-47.69 
-50.21 
-43.14 

55.66 
50.06 
49.77 

622.49 
571.07 
501.37 

Larisa 2005 
HGadj 

BPANN 
CCANN 

-13.654* 
-14.42* 
-9.074* 

-67.99 
-66.66 
-58.77 

40.69 
37.81 
40.63 

857.31 
827.90 
643.53 

1Bias (%): (+) indicates an underestimation, (-) indicates an overestimation 
* Indicates bias not significantly different from zero (a=0.05) 
 
Table 4 shows that all different estimating models gave unbiased results. The values of the mean 
square bias of the percentage errors (Msb%) of the CCANN model were significantly lower than those 
of the BPANN model and the HGadj method for all data sets and all stations.  
From Figure 2 and Tables 2, 3 and 4 it is clear that the selected CCANN model of the Cascade 
Correlation algorithm in which Kalman’s learning rule is embedded was superior to the BPANN model 
and the HGadj method and leads to higher estimation accuracy for all data sets and all stations. 
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CONCLUSIONS 
The CCANN model was found to perform better than the BPANN model and the HGadj method, 
even in the case of the two stations that are located beyond the station in which the calibration data 
were measured. The good results of the CCANN model are of significant practical use because the 
temperature-based CCANN model can be used when relative humidity, radiation and wind speed 
data are not available. The developed CCANN model of a Cascade Correlation algorithm in which 
Kalman’s learning rule is embedded has the ability to estimate the daily ETo with reasonable 
accuracy and to give a generalized solution.  
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