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ABSTRACT 
In the present study, the Kalman filter algorithm was applied to forecast the wintertime PM10 
concentrations of Macau. The algorithm was implemented on an AR(2) model and an AREX 
model, respectively. The AR(2) model is essentially an autoregressive model of order 2, i.e., 
the daily averaged PM10 concentration tomorrow is predicted by a linear combination of the 
PM10 concentrations in the previous two days. The AREX model is built based on the AR(2) 
model. It is a combination of the autoregressive model and the exogenous inputs such as the 
wind speed and the wind direction on the day of prediction. Both models were tested by using 
the PM10 concentrations and the meteorological data between November of 2004 and 
February of 2005. It was found that the mean absolute prediction error percentage of the AR(2) 
model was 36.36%, with an RMS error of 34.94 µg m-3. The Pearson correlation coefficient 
between the predictions and the measurements is 0.59.Time-delay problem was associated 
with the AR(2) model, i.e., the trend of the predicted PM10 concentrations generally lagged 
behind the trend of the measurements. On the other hand, the error percentage of the AREX 
model was 32.45%, with an RMS error of 27.08 µg m-3. The Pearson correlation coefficient is 
0.75. The time-delay problem was improved and the trend of the predictions was in good 
agreement with the measurements. The AREX model outperformed the AR(2) model since the 
meteorological conditions could reflect the dispersion condition and the nature of the 
replenishing air masses on the day of prediction. It was concluded that the Kalman filter was 
promising in the air quality prediction but caution should be made in the selection of the model 
classes. 
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INTRODUCTION 
Nowadays, the degradation of air quality is widely observed in most urban areas due to rapid 
population growth and economic development. As more goods and services are produced for 
human satisfaction, energy is consumed from the fuel combustion processes. At the same time, 
air pollutants such as particulates, sulfur dioxide, nitrogen dioxide or carbon monoxide are 
generated and released to the atmosphere. When the air pollutants enter the human body, 
they may cause adverse health effects such as bronchitis, asthma, and heart disease, etc 
(Curtis et al., 2006; Dockery et al., 1993). According to the statistics provided by the World 
Health Organization (WHO), three million people face terminal health problems worldwide by 
the outdoor air pollution annually from vehicles and industrial emissions. With such relevance 
to human health, it necessitates the development of the air quality prediction system since 
accurate air quality forecast can help people to reduce/cancel outdoor activities on the days of 
high pollutant concentrations. Meanwhile, more flexible and realistic emission control 
strategies can be implemented if the future air quality is known in advance. Currently, many 
cities in Canada and the U.S. have regulations in place to curtail industrial and other activities 
during times of observed poor air quality. In Canada, the Alberta Environment asks industry to 
cut production during morning hours of poor air quality in Calgary and Edmonton. In the United 
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States, an ozone action day is called by the state or local air quality agency when ozone levels 
are forecasted to reach unhealthy levels. During ozone action days, the state or local authority 
asks the community to take simple voluntary actions to help reducing ground level ozone and 
hence preventing violation of the National Ambient Air Quality Standards (NAAQS) (Ojha et al., 
2002). Therefore, the development of an air quality prediction system plays an important role in 
fulfilling the aforementioned objectives.  
Macau is a coastal city on the West side of the Pearl River Delta Region as shown in Figure 1. 
It has a geographical area of 28.6 km2 and a population of 510,000. Table 1 shows the 
statistics of daily PM10 concentrations between 2000 and 2004. It is noted that the annual PM10 
concentration generally increases during the studied period and the average increase, which is 
obtained from the slope of the best fit straight line across the data points, is 3.91 µg m-3 yr-1. 
However, the maxima and the minima of the daily PM10 concentration do not follow the same 
trend of the annual PM10 concentration. Nevertheless, there are also increases in the maxima 
and minima of the daily averaged PM10 concentrations between 2000 and 2004. The average 
increases are 2.45 µg m-3 yr-1 and 0.72 µg m-3 yr-1 for the maxima and the minima, respectively. 
Therefore, it is concluded that the situation of the PM10 pollution in Macau is worsening during 
the studied period. Figure 2 shows the percentage of days with bad air quality between 2000 
and 2004. The air quality is characterized as bad when the daily air quality index is larger than 
100. 

 
Figure 1. Geographical Location of Macau in the Pearl River Delta Region (Google Maps, 

2007) 
 

Table 1. Statistics of daily averaged PM10 concentrations between 2000 and 2004 

Year Mean (µg m-3) Maxima (µg m-3) Minima (µg m-3) 
2000 48.5 172.1 7.4 
2001 57.2 227.0 6.4 
2002 50.4 203.5 8.8 
2003 59.7 201.5 9.8 
2004 66.8 197.1 9.3 

 
It is noted that the number of days with bad air quality generally increases during this period. 
The peak occurs in 2004 and it corresponds to 8.83% of the whole year. The steep rise in the 
number of PM10 episode days between 2002 and 2004 coincides with the booming of the 
Macau economy as there is a 45.4% increase in the GDP per capita of Macau from 
USD15,567 to USD22,634 (Macau Statistics and Census Bureau, 2008). The increase in the 
economic activities may lead to increased energy consumption and the subsequent increase 
in the air pollution. Therefore, the problem of air quality deterioration is severe and has raised 
our concern. To tackle with the current circumstances, an initial step is to develop an air quality 
prediction system so that citizens can have chances to minimize the time of exposure to the air 
pollutants on the air quality episode days. It is also the motivation of the present study. 
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Figure 2. Percentage of Days with Bad Quality between 2000 and 2004 

 
In this study, the Kalman filter algorithm is applied. Kalman filter was originally formulated by 
Kalman and Bucy for the prediction and filtering of random signals for linear systems (Kalman, 
1960; Kalman & Bucy, 1961). Thereafter, the extended Kalman filter was applied to system 
identification for linear or slightly non-linear dynamic systems, in addition to its state estimation 
capability, in many disciplines of science and engineering. Kalman filter becomes popular since 
the algorithm not only provides the response prediction and the estimation of model parameters 
but also their associated uncertainties. Furthermore, it is operated in an online manner, i.e., the 
model is updated once a new data point is obtained. Successful application of the Kalman filter 
in air quality prediction can be found in several literatures (Anh et al., 1998; Ng & Yan, 2004; van 
der Wal & Jansen, 2000; Zolghadri & Cazaurang, 2006). Therefore, the objective of the present 
study is to test the applicability of Kalman filter to predict the daily averaged PM10 concentrations 
of Macau. PM10 is a collective name used to describe the particles with an aerodynamic size of 
not greater than 10 µm. It is chosen to be the target species for prediction since it is one of the 
dominant air pollutants in Macau especially during the winter period. Figure 3 shows the time 
series of the daily averaged PM10 concentrations between 2000 and 2004. It is noted that there 
is a distinct seasonal pattern, i.e., high PM10 concentrations are generally observed in the winter 
period. In comparison to the other seasons, there are more days that the daily averaged PM10 
concentrations are larger than 100 µg m-3. The concentration corresponds to an air quality index 
of 100, which indicates a day of bad air quality.  

 
Figure 3. Time Series of Daily Averaged PM10 Concentrations between 2000 and 2004 
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Mok and Hoi (2005) found that the seasonal behavior was associated with swing of the 
prevailing wind directions caused by the Asian monsoon climates. The monsoon driven winter 
north-easterly winds bring upon Macau dry and particle enriched air masses leading to a 
higher concentration in that period while the summer south-westerly winds transport humid 
and cleaner air from South China Sea to the region leading to a lower PM10 value (Mok & Hoi, 
2005). Since the problem of PM10 pollution in Macau is more significant during winter, the 
development of the air quality prediction system in the present study is focused on this season. 
In this study, the Kalman filter is implemented on two different models, namely an AR(2) model 
and an AREX model. Both models are tested by using the daily averaged PM10 concentrations 
and the meteorological data provided from Macau Meteorological and Geophysical Bureau. 
The PM10 data were recorded by using the Tapered Element Oscillating Microbalance (TEOM) 
at the ambient monitoring station of Macau between November of 2004 and February of 2005. 
Figure 4 shows the surrounding environment of the monitoring station. The station is located at 
the Taipa Grande Hill which has an altitude of 158.2 m. Therefore, its measurements are 
representative to indicate the general ambient air quality of Macau. In the following section, the 
formulation of the model classes and the Kalman filter is briefly described. 
 

  
Figure 4. General Ambient Monitoring Station and its Surrounding Environment (Macau 

Meteorological and Geophysical Bureau, 2007) 
 
FORMULATION 
AR(2) model 
In this section, the Kalman filter is formulated for the autoregressive model of order 2 with time 
varying coefficients, which is abbreviated as the AR(2) model: 

121,211,1 −−−−− ++= kkkkkk fxxx φφ  (1) 
where xk denotes the daily averaged PM10 concentration of the kth day. The input f represents 
the modeling error, and it is modeled as Gaussian i.i.d. with zero mean and variance σf

2. It 
stands for the neglected factors that influence the PM10 concentration on the day of prediction. 
In addition, it is assumed that the measurement of [PM10], denoted as zk, is contaminated 
during the measurement process. The relationship between zk and the xk is given as follows: 

kkk nxz +=  (2) 
where n denotes the measurement noise and it is also modeled as Gaussian i.i.d. with zero 
mean and variance σn

2. The AR(2) model simply means that the PM10 concentration of the kth 
day is a weighted sum of its concentrations of the previous two days and the weights are 
represented by the time-varying coefficients φi to be identified. Those unknown coefficients 
evolve according to the following equation: 

1,1,, −− += kikiki wφφ  (3) 
where wi,k-1 denotes the perturbation to the coefficient φi,k-1 at the (k-1)th time step and it is one 
of the components in the random process wi. The process is modeled as Gaussian i.i.d. with 
zero mean and variance σw

2. Now we define an augmented state vector Yk which contains the 
PM10 concentrations of different days and the unknown coefficients to be estimated: 
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[ ]Tkkkkk xx ,2,11 ,,, φφ−=Y  (4) 

Also, we define a process noise vector Fk which contains the process noises fk and wi,k, i=1,2, 
as follows: 

[ ]Tkkkk wwf ,2,1 ,,=F  (5) 

Then, one can linearize the state space equation for the AR(2) model: 

1111 −−−− ++= kkkkk GBFYAY  (6) 

where Ak-1 and B are the transition matrices and the vector Gk-1 is to compensate the 
linearization error. It is noted that B is constant for any time step and the terms Ak-1 and Gk-1 are 
evaluated at ēY,k-1, which represents the updated state estimate of Yk-1 when the 
measurements Dk-1={z1,z2,…,zk-1} are available.  
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With this state space model, one can perform the prediction and filtering of the PM10 
concentrations by using the Kalman filter. The essential steps of the Kalman filter are to 
pre-update and update alternatively for each data point of the dataset DN. When the measured 
PM10 concentrations up to the (k-1)th day Dk-1 are available, the pre-updating procedure is 
applied to predict the PM10 concentration in the next time step by using the conditional 
probability density function p(Yk|Dk-1). In the present study, the conditional PDF is assumed to 
be multi-variate Gaussian. By using Eqn. (6), the pre-updated state vector on the kth day can 
be estimated from the updated state on the (k-1)th day: 
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In addition, the uncertainty of the air quality prediction and the estimated model parameters are 
represented by the covariance matrix: 

( )( )[ ] TT
kkkk

T
kkkkk E BBΣAΣADeYeYΣ FYYYY +=−−≡ −−−− 11,11,,, |  (11) 

where ΣF is the covariance matrix of the process noise vector: 



KALMAN FILTER BASED PREDICTION SYSTEM  145 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=≡
2

2

2

00
00
00

w

w

f
T
kkE

σ
σ

σ
FFΣF  (12) 

When the measurement on the kth day is available, the PM10 concentration and the model 
parameters are updated by finding the updated state vector Yk. This is accomplished by 
maximizing the conditional PDF p(Yk|Dk): 

[ ] ( )k
T

nkkkkkk zE CeΣΣDYe YYYY
2

,
1
,,, | −− +=≡ σ  (13) 

where C is the observation matrix which relates zk and Yk in the following form: 

[ ]0010, =+= CCY kkk nz  (14) 

The uncertainty of the state estimation is represented by its covariance matrix: 

( )( )[ ] ( ) 121
,,,, | −−− +=−−≡ CCΣDeYeYΣ YYYY

T
nkk

T
kkkkk E σ  (15) 

 
AREX model 
In this section, the Kalman filter is implemented on a time varying autoregressive model with 
exogenous inputs, which is abbreviated as the AREX model: 

( ) ( )[ ] kkkkkkkkkkkk fuuxx ++−−+−+= −−−−−− θφφφφφφ 1,51,31,41,31,21,1 exp1exp  (16) 

where uk and θk denote the wind speed and wind direction at the kth day, respectively. The 
model is different from the previous one since the prediction is not solely made based on its 
past history. On the contrary, some physical quantities that can influence the PM10 
concentration on the day of prediction are also taken into account. Those physical quantities 
are reflected from the second, third and fourth term in Eqn. (16). The second term represents 
the contribution of PM10 concentration from the local sources. The wind speed inside this term 
indicates the dispersion condition. Usually low wind speed is associated with poor dispersion 
condition. When the wind speed becomes low, the atmosphere becomes stagnant. The 
pollutants are trapped inside the boundary layer and cannot be transported away readily from 
local to downwind areas through advection. Therefore, the second term means that the 
contribution from the local sources decreases exponentially with the wind speed. The effect of 
wind speed is assumed to lead to have an exponential decay of the concentration since the 
mass flux of the air pollutant being transported away is enhanced with increasing wind speed. 
At the same time, the increasing wind speed is associated with increased turbulence intensity, 
which in turns enhances the vertical mixing of the atmosphere. Therefore, a nonlinear 
relationship between the concentration and the wind speed is assumed here. In fact, a similar 
power law relationship between the pollutant concentrations and the wind speed was adopted 
in previous studies (Shi & Harrison, 1995; Goyal et al., 2006). The coefficient φ2 denotes the 
local source strength and the coefficient φ3 controls the decaying speed. On the other hand, 
the third term and the fourth term in Eqn. (16) represent the contribution of PM10 concentration 
from the regional sources. The third term means that the regional contribution increases with 
the wind speed until it reaches certain limit. After the wind speed passes that limit, the regional 
contribution will be insensitive. The coefficient φ4 denotes the strength of the regional sources. 
The fourth term represents the effect of wind direction on the PM10 concentration. The wind 
direction is a crucial factor in determining the sources of air pollution being brought to Macau. 
In fact, previous studies have shown that the change of wind direction can affect the pollutant 
concentrations of the Pearl River Delta region (Lee & Hills, 2003; Mok & Hoi, 2003; Chang et 
al., 2007). In addition, this variable was also included as one of the input variables in the air 
quality prediction models of previous studies applied to other cities (Shi & Harrison, 1995; 
Goyal et al., 2006). The wind direction is defined here as the direction from which the wind is 
blowing measured clockwise from the Geographic True North. For example, 0° represents the 
North direction whereas 90° is the East direction. The input variable θ used in this study is the 
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number of wind sector, which represents a particular range of wind direction. The number 
ranges from 0 and 8 and each number contains a 40° range of wind direction. For example, the 
number ‘0’ represents the range between -20° and 20°. Therefore, the entire range of wind 
directions (-180° to 180°) can be classified into 9 sectors. The number of wind sector is used 
here to indicate the type of replenishing air masses being transported to Macau on the day of 
prediction. As the number of wind sector approaches from 0 to 8, the direction of surface wind 
blowing to Macau changes gradually from northerly to southerly. As Macau is located at the 
southwest of the Pearl River Delta Region which is composed of several fast developing cities 
such as Guangzhou and Shenzhen in the recent decades, the air pollution problem in this 
region is severe. Particulates can be easily transported to Macau from its upwind cities nearby 
when the prevailing winds are blowing from the northerly directions. On the contrary, Macau is 
facing the South China Sea located to its South direction. When the winds are blowing from the 
South China Sea, Macau is less influenced by the transboundary air pollution from the cities 
located to its North. Therefore, the fourth term can be used to counterbalance the effect of the 
second term and the third term when the winds are blowing from the sea. Finally, the term fk-1 
represents the modeling error and it is modeled as Gaussian i.i.d. with zero mean and variance σf

2.  
Now we define an augmented state vector Yk which contains the PM10 concentration yesterday 
and the unknown coefficients to be estimated: 

[ ]Tkkkkkkk x ,5,4,3,,2,1 ,,,, φφφφφ=Y  (17)

Also, we define a process noise vector Fk which contains the process noises fk and wi,k as 
follows: 

[ ]Tkkkkkkk wwwwwf ,5,4,3,2,1 ,,,,,=F  (18)

The covariance matrix of the process noise vector is shown below: 
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Then, one can linearize the state space equation for the AREX model. The transition matrices 
Ak-1, B and the compensation vector Gk-1 are given below: 
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Then the Kalman filter is operated by applying the pre-updating procedure and the updating 
procedure sequentially on each measurement zk. By using Eqn. (6), the pre-updated state 
vector on the kth day can be estimated from the updated state on the (k-1)th day: 
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The covariance matrix of the pre-updated state vector is calculated by using Eqn. (11). The 
updated state vector and the corresponding covariance matrix can be found by applying Eqn. 
(13) and Eqn. (15). However, caution should be made in applying Eqn. (15) since the 
observation matrix C is different from the previous one and the revised observation matrix is 
shown below: 

[ ]000001=C  (24) 

In the following section, both models are tested by using the daily averaged PM10 
concentrations and the meteorological data provided from Macau Meteorological and 
Geophysical Bureau. The supplied data were recorded at the ambient monitoring station of 
Macau between November of 2004 and February of 2005. Figure 3 shows the surrounding 
environment of the monitoring station. The station is located at the Taipa Grande Hill which has 
an altitude of 158.2m. Therefore, its measurements are representative to indicate the general 
ambient air quality of Macau. 
 
RESULTS 
The prediction result obtained from the AR(2) model is shown in Figure 5a. The solid line 
shows the measured daily averaged PM10 concentration, whereas the dotted line shows the 
result of prediction. It is noted that there is a time-delay problem associated with the AR(2) 
model, i.e., the trend of the predictions generally lags behind the trend of the measurements. 
The problem appears since the prediction is made based on its own past history. Those 
influencing factors such as the dispersion condition on the day of prediction and the nature of 
replenishing air masses which can be continental or oceanic are treated as the process noises. 
Therefore, the process noise is large relative to the RMS of the signal and the large 
noise-to-signal ratio causes the predicted signal to be delayed. In order to quantify the error of 
prediction, three performance measures, namely the mean absolute percentage error (MAPE), 
the root mean squared error (RMSE) and the Pearson correlation coefficient r are introduced 
as follows: 
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where zk, xk, and N are the measurement, the prediction, and the number of samples in the  
dataset, respectively. The symbols µz and µx denote the average values of the 
measurements and predictions, respectively. Table 2 shows the results on the model 
validation of the AR(2) model and the AREX model. The MAPE, the RMSE and the r value 
for the AR(2) model are 36.36%, 34.94 µg m-3, and 0.59, respectively. Figure 5b and 5c 
show the corresponding contributions to the predicted PM10 concentrations from the first term 
and the second term in Eqn. (1).  
 

Table 2. Results on the model validation of the AR(2) model and the AREX model 
Model class MAPE (%) RMSE (µg m-3) r 

AR(2) 36.36 34.94 0.59 
AREX 32.45 27.08 0.75 

 

 
Figure 5. (a) Time History of Measured Daily PM10 Concentrations (solid line) and its Prediction 

(dotted line) from AR(2) Model; (b-c) Time Histories of Contributions to the Predicted PM10 
Concentrations from the 1st Term φ1,k-1xk-1and the 2nd Term φ2,k-1xk-2. 

 
It is noted that the contribution from the first term is significantly larger than the contribution 
from the second term. Figure 6a shows the prediction result obtained from the AREX model. 
The solid line shows the measured daily average of PM10 concentration, whereas the dotted 
line shows the prediction result. It is noted that the time-delay problem observed previously in 
the AR(2) model has been improved. The MAPE, the RMSE, and the r value for the AREX 
model are 32.45%, 27.08 µg m-3, and 0.75, respectively. The percentage decreases of MAPE 
and RMSE are 10.75% and 22.50%, respectively. The percentage increase of the r value is 
27.12%. The improvement in the prediction accuracy and the problem of time-delay can be 
explained by investigating the contributions to the predicted PM10 concentrations from different 
terms in Eqn. (16) as shown in Figures 6b-6e. It is noted that the predicted PM10 concentration 
does not only rely on the contribution from its past concentration since the contribution from 
the first term as shown in Figure 1b is reduced. On the contrary, the second term and the fourth 
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term of the equation have significant contribution to the prediction. The second term has 
positive contribution to the predicted PM10 concentration since the wind speed can somehow 
reflect the dispersion condition on the day of prediction. When the wind speed becomes low, 
the atmosphere becomes stagnant. The pollutants are trapped inside the boundary layer and 
cannot be transported away readily from local to downwind areas through advection. 
Therefore, relatively high contributions are generally associated with low wind speed. On the 
other hand, the fourth term has negative contribution to the predicted concentration since the 
number of wind sector can reflect the nature of replenishing air masses on the day of 
prediction. As the number of wind sector approaches from 0 to 8, the source of replenishing air 
changes from the continent of China to the South China Sea. Therefore, negative contributions 
are generally associated with large numbers of wind sectors. However, it is surprising that the 
third term has little contribution to the predicted PM10 concentration. The third term represents 
the transport of PM10 from regional sources. It is supposed that large positive contribution to 
the prediction should be associated with high  

 
Figure 6. (a) Time History of Measured Daily PM10 concentrations (solid line) and its 

Prediction (dotted line) from AREX Model; (b-e) Time Histories of Contributions to the 
Predicted PM10 Concentrations from the 1st Term to the 4th Term. 

 
wind speed and northerly wind direction. However, the result does not fit with the assumption. 
Therefore, the regional sources causing high PM10 concentrations of Macau during the test 
period may be near Macau and even low wind speed is enough to transport the pollutants to 
Macau when the winds are blowing from the continent. More fundamental understanding of the 
phenomenon causing high PM10 concentration is necessary in order to modify the model class 
and achieve higher prediction accuracy. Concluding from those findings, the prediction accuracy 
and the time-delay problem are improved since the information of wind speed and wind direction 
make the model class more representative hence reducing the process noise of the system. 
 
CONCLUSIONS 
The extended Kalman filter was applied to forecast the daily averaged PM10 concentrations 
based on an AR(2) model and an AREX model. Both models were tested with the measured 
PM10 concentrations and meteorological data between November of 2004 and February of 
2005. It was found that the AREX model was superior to the AR(2) model based on the 
judgment of prediction accuracy and the agreement in the trends of measured PM10 
concentrations and predicted PM10 concentrations. It was concluded that knowing the past 
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history of air quality was not sufficient enough for prediction since the meteorological 
conditions also played an important role in the accumulation or removal of PM10 on the day of 
prediction. However, the AREX model proposed in the present study is still preliminary. In the 
future study, the model can be improved by further investigating the meteorological factors 
which lead to the accumulation and removal of PM10 concentrations in Macau (Chang et al., 
2007). In addition to the model class modification, further improvement can be achieved by 
adjusting the process noise and measurement noise parameters which are demonstrated to 
affect the performance of Kalman filter (Yuen et al., 2007). Finally, it was concluded that the 
Kalman filter was promising in the air quality prediction. However, caution should be made in 
the selection of the model class. 
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