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ABSTRACT 
The aim of the present paper is to give a systematic and critical presentation of important existing 
analytical solutions for transient stream-aquifer interaction, which can be used to give answers to 
simple interaction problems or to verify mathematical models. Stream-aquifer interaction is the most 
common subject of papers discussing surface water-ground water interaction and a review of 
analytical solutions to the problem is lacking from the literature. The analytical solutions presented in 
the paper are firstly distinguished based on whether only the ground water flow equations or both the 
ground water and stream flow equations are solved for their derivation and secondly based on the 
type of aquifer (confined or unconfined) interacting with the stream and on the type of equations 
solved. The literature review showed that there is only a small number of publications, where the 
authors consider both the ground water and the stream flow equations for the development of the 
analytical solutions. The majority of the available analytical solutions of stream-aquifer interaction 
are derived by solving only the ground water flow equations, taking into account the stream water 
level as a boundary condition.  
For each analytical solution presented in the paper, its accuracy, its ease of application to simple 
interaction problems and its suitability for the verification of mathematical models are discussed in 
detail. Specifically for the case of predicting the water table level in unconfined aquifers interacting 
with streams, an analytical solution of the non-linear Boussinesq equation is compared to two 
analytical solutions of different linearized forms of the Boussinesq equation, in order to quantify the 
error in estimating the water table level when using a linear solution. Among the very few analytical 
solutions found in the literature, where the authors consider both the stream flow and ground water 
flow equations for their development, the most comprehensive one is chosen to give an application 
example, which can be used as a benchmark case for the verification of integrated stream-aquifer 
mathematical models.    
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1. INTRODUCTION  
Surface water and ground water are not isolated components of the hydrologic cycle. Instead, all 
surface water bodies are often hydraulically connected to ground water and the interaction between 
them affects both their quantity and quality. In the past few decades, increased demand for water 
associated with population growth has heightened environmental awareness and with it the 
realization that effective management of the limited water resources requires a realistic quantification 
of the interaction between surface water and ground water (Courbis et al., 2008; Ma et al., 2008).   
Until the advent of computers, analytical solutions used to be the only computational method 
available to quantify surface water-ground water interaction. The limitation of the analytical solutions 
is that they are applicable to simplified or idealized cases. Today, with the evolution of computers, 
we have the possibility to develop and use sophisticated mathematical models for the solution of 
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complex interaction problems, in regard to geometry, boundary conditions and aquifer hydraulic 
properties and developing analytical solutions is commonly seen as cumbersome and limiting 
(Haitjema 2006). However, analytical solutions to interaction problems are important and should not 
be seen as something from the past because: (a) their application is straightforward and is the 
simplest and quickest way to obtain answers for simple interaction cases, (b) they give good insight 
into the dependence of the solution variable on the state variables and therefore improve our 
understanding of the physical processes occurring within an interacting surface water-ground water 
system, (c) they provide a means of validating the mathematics of a numerical solution and (d) they 
can be used to estimate aquifer hydraulic properties, e.g. hydraulic diffusivity (Halkidis et al., 2009).  
The aim of this paper is to give a systematic and critical presentation of an array of important 
analytical solutions of stream-aquifer interaction, which can be used to give answers to simple 
interaction problems or to verify mathematical models. Stream-aquifer interaction is the most 
common subject of papers discussing surface water-ground water interaction and a review of 
analytical solutions to the problem is lacking from the literature. In the present paper, only solutions 
for transient stream-aquifer interaction are analyzed, as including the large number of existing 
steady state solutions would take far more space than available here. Furthermore, steady state 
solutions are well-documented in popular textbooks (e.g. Polubarinova-Kochina, 1962; Harr, 1962). 
The analytical solutions presented in the paper are distinguished based on whether only the ground 
water flow equations or both the ground water and stream flow equations are solved for their 
derivation. The majority of the available analytical solutions of stream-aquifer interaction are derived 
by solving only the ground water flow equations. The stream water level fluctuations are assumed to 
be known a priori and are used as a boundary condition for the solution of the ground water flow 
equations. Only a very small number of publications is found in the literature, where the authors 
consider both sets of equations in the development of the analytical solutions (e.g. Hunt, 1990; Lal, 
2001; Hantush et al., 2002). The analytical solutions presented in the paper are further distinguished 
based on the type of aquifer interacting with the stream and on the type of equations solved for their 
development. Their advantages and limitations are discussed in detail. An application example is 
given for an analytical solution, derived by solving the coupled stream flow and ground water flow 
equations, which is found by the authors more suitable for the verification of mathematical models.  
 
2. ANALYTICAL SOLUTIONS OF STREAM-AQUIFER INTERACTION: SOLUTION OF THE 
GROUND WATER FLOW EQUATIONS  
 
2.1 Confined aquifers 
The literature review showed that the problem of quantifying the interaction between a stream and a 
confined aquifer is usually reduced to solving the homogeneous or the non-homogeneous 1-D 
diffusion equation for various boundary conditions. The 1-D diffusion equation can be solved using a 
number of mathematical methods. The most common is to use Laplace transforms, as described by 
Carslaw and Jaeger (1959) for the solution of problems of heat conduction. For boundary conditions, 
which vary sinusoidally in time, the steady periodic solution of the 1-D diffusion equation is usually 
obtained assuming that it takes the form of a combination of sines and cosines or that it can be 
represented by the real part of a complex variable (Pipes and Harvill, 1970).      
The general case of stream-confined aquifer interaction considered by most authors is shown in 
Figure 1. A horizontal, semi-infinite or of finite width, homogeneous and isotropic aquifer is bounded 
at one end by a fully penetrating stream with or without semipervious banks. The implicit assumption 
is made that the semipervious stream banks have no storage. The aquifer has a constant thickness 
and an impermeable base. Ground water flow is assumed 1-D horizontal in the x direction and is 
described by the homogeneous diffusion equation (1) with the appropriate initial and boundary 
conditions (equations (2) to (4b)).  
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Figure 1. Stream-confined aquifer interaction schematic 
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In equations (1) to (4b) h(x,t) [L] is the piezometric head, σ [L2T-1] is the aquifer hydraulic diffusivity 
defined as σ=T/S, where T [L2T-1] is the aquifer transmissivity and S [−] is the aquifer storage 
coefficient, hs(t) [L] is the stream water level, h0 is the initial value of piezometric heads in the 
aquifer, which coincides with the initial stream water level and a [L] is the retardation coefficient as 
defined by Hantush (1965) equal to a=Kbb/K, where K [LT-1] is the aquifer hydraulic conductivity and 
Kb [LT-1] and b [L] are the hydraulic conductivity and the thickness, respectively, of the semipervious 
stream bank. The retardation coefficient describes the resistance to flow imparted by the 
semipervious bank. This resistance may alternatively be viewed as the effective width of aquifer with 
no storage, required to cause the same piezometric head loss as the semipervious stream bank.  
Hantush (1961) developed solutions for the piezometric heads in a semi-infinite aquifer for a linear 
variation of the stream water level with time. A solution for the steady periodic response of the 
piezometric heads in a semi-infinite aquifer subject to a sinusoidal variation of the stream water level 
was presented by Ferris (1963). Cooper and Rorabaugh (1963) derived solutions for the piezometric 
heads, the seepage at the stream-aquifer interface and the bank storage, for the case of a 
symmetrical or asymmetrical flood wave at the stream and a semi-infinite or of finite width aquifer. 
Probably the most widely applied solutions are those of Hall and Moench (1972) for the response of 
the piezometric heads in a semi-infinite or of finite width aquifer to a unit step change of the stream 
water level. The authors also provided analytical solutions for the seepage at the stream-aquifer 
interface. Hall and Moench (1972) were the first to examine the case of a stream with semipervious 
banks. As far as the solution method is concerned, Cooper and Rorabaugh (1963) used Laplace 
transforms to derive the expressions for the aquifer responses. The solutions presented in Hantush 
(1961), Ferris (1963) and Hall and Moench (1972) were obtained from the solution of analogous 
problems of heat conduction (Carslaw and Jaeger, 1959; Ingersoll et al., 1948).   
Singh (2004) extended previous works by considering, for the first time, the effect of both stream 
partial penetration and semipervious bed and banks on aquifer responses. He derived analytical 
expressions for the piezometric heads, the flow rate and the volume of flow in a horizontal, infinite, 
homogeneous and isotropic aquifer for the following stream water level variations: (a) sinusoidal, (b) 
linear, (c) a unit step change and (d) a symmetrical flood wave. Singh (2004) simplified the solution 
of the actual problem (Figure 2 (a)) by considering the equivalent idealized case of a fully 
penetrating stream (Figure 2 (b)). He introduced an additional hypothetical aquifer width, R, with no 
storage, required to cause the same piezometric head loss as the stream partial penetration and 
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semipervious bed and banks. Assuming 1-D ground water flow in the x direction, the idealized 
problem can be described by equations (1), (2), (3b) and (4a), if the retardation coefficient, a, is 
replaced by R. Singh (2004) obtained analytical solutions to the problem, for the different stream 
water level variations, from the solution of analogous problems of heat conduction (Carslaw and 
Jaeger, 1959).  
Parameters a and R, as defined in the previous paragraphs, are used to account for stream 
resistance to flow. The difference between them is that R includes the resistances due to both the 
semipervious bed and partial penetration of the stream. Therefore, R can be expressed as R=a+Rp, 
where Rp is the resistance due to stream partial penetration (Singh, 2003). It is important to note that 
there is no equation available for estimating Rp. Singh (2003 and 2004) suggests that the value of R 
can be obtained from field measurements through minimization of the errors between the measured 
and analytically computed piezometric heads.  
Singh’s (2004) analytical solutions are the most comprehensive of those that have been published 
for semi-infinite confined aquifers; analytical solutions presented in previous works can be obtained 
as special cases of Singh’s solutions. In more detail: (a) if R=0 (i.e. fully penetrating stream having 
no semipervious bed) is put in Singh’s analytical expressions for aquifer responses to a symmetrical 
flood wave and to a linear variation of the stream water level, one gets the expressions given by 
Cooper and Rorabaugh (1963) and by Hantush (1961), respectively, (b) Singh’s solution for a unit 
step change of the stream water level coincides with the solution of Hall and Moench (1972), if R is 
replaced by a and (c) for large values of time and for R=0, Singh’s solution for a sinusoidal variation 
of the stream water level reduces to the steady periodic solution of Ferris (1963). The drawback in 
applying Singh’s solutions for predicting aquifer responses in simple interaction cases or for verifying 
mathematical models is that there is no equation available for estimating R. However, Singh’s 
analytical solutions are useful in estimating aquifer hydraulic diffusivity, σ and stream resistance to 
flow, R, from field measurements of piezometric heads.  
 

 
Figure 2. Schematic of the stream-confined aquifer interaction problem considered by Singh (2004): 

(a) actual problem and (b) idealized problem 
 

A very interesting work is that of Townley (1995), who presented a methodology for obtaining the 
response of the piezometric heads in a homogeneous and isotropic confined aquifer of finite width, 
to boundary conditions, which vary sinusoidally in time. Townley (1995) obtained the steady periodic 
solution of the non-homogeneous 1-D diffusion equation (5), assuming that it can be represented by 
the real part of a complex variable (Pipes and Harvill, 1970).   
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In equation (5) W(t) [LT-1] represents distributed recharge or evapotranspiration. The author 
presented the solution in a general form, which can be applied for any boundary conditions 
(Dirichlet, Neuman or Cauchy), provided, of course, that at least one of them or the 
recharge/evapotranspiration varies sinusoidally in time. Townley (1995) gave application examples 
of the general solution for the following cases: (a) impermeable boundary at x=0 (Neumann 
boundary condition), fully penetrating stream with sinusoidally varying water level at x=Wa (Dirichlet 
boundary condition) and W(t)=0, (b) impermeable boundary at x=0, fully penetrating stream with 
constant water level at x=Wa and W(t) varying sinusoidally with time and (c) impermeable boundary 
at x=0, fully penetrating stream with semipervious banks and sinusoidally varying water level at 
x=Wa (Cauchy boundary condition) and W(t) varying sinusoidally in time.  
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Analytical solutions of the ground water flow equations for ideal boundary conditions such as step, 
linear or sinusoidal stream water level fluctuations are useful for understanding the transient 
response of ground water systems to stream water level changes. However, stream water level 
usually varies arbitrarily in time. For such cases the convolution method can be used for obtaining 
the aquifer responses. Convolution is a form of superposition. It uses the response of a linear 
system to an impulse or a unit step input, to simulate the effect of arbitrary input with the help of 
convolution integrals (Hall and Moench, 1972). Since the stream water level is usually measured at 
discrete time intervals, the convolution integrals are expressed in a discretized form and are solved 
numerically (Hall and Moench, 1972).  
A comprehensive discussion of the use of the convolution method in stream-aquifer studies is given 
by Hall and Moench (1972). Barlow et al. (2000) used convolution integrals to estimate aquifer 
responses to an arbitrary stream water level for the same interaction cases considered by Hall and 
Moench (1972). The treatment for an arbitrary stream water level has also been addressed by Singh 
(2004), who used pulse kernels and ramp kernels to solve the convolution integrals. Singh (2004) 
found that the use of ramp kernels for obtaining the convolution integral gives superior results than 
the use of conventional numerical integration or pulse kernels.   

 
2.2 Unconfined aquifers 
Two approaches have been used to derive analytical solutions for flow in unconfined aquifers 
interacting with streams. The first approach assumes 1-D horizontal ground water flow in a 
homogeneous and isotropic aquifer. The second approach treats ground water flow as 2-D in the 
vertical x-z plane.  
The interaction cases considered in the first approach are illustrated in Figure 3. The aquifer can be 
semi-infinite or of finite width, bounded at one end by a fully penetrating stream with or without 
semipervious banks (Figure 3 (a)). The problem of a finite-width aquifer bounded by two fully 
penetrating streams with no semipervious banks (Figure 3 (b)), has also been examined by many 
researchers. In Figure 3, h0(x) is used to describe the initial ground water table level across the 
aquifer, i.e. h(x,0)=h0(x). Under the assumption of a homogeneous and isotropic aquifer, 1-D 
horizontal ground water flow is described by the Boussinesq equation:   
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where Sy [−] is the aquifer specific yield. 
 

 
Figure 3. Schematic of stream-unconfined aquifer interaction cases where ground water flow is 

considered 1-D horizontal 
 

The Boussinesq equation (6) is a non-linear partial differential equation and therefore, its analytical 
solution is cumbersome. Serrano and Workman (1998) used the decomposition method (Adomian, 
1994) to develop an analytical solution of the Boussinesq equation for the case shown in Figure 3 
(b). Their work is the only one found in the literature, where the non-linear Boussinesq equation is 
solved to estimate stream-aquifer interaction. In all other publications, where 1-D horizontal flow in a 
homogeneous and isotropic aquifer is considered, one of the linearized forms (7a) or (7b) of 
equation (6) is solved.  
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In (7a) and (7b) T represents a mean value of transmissivity defined as hKT = , where h  is a mean 
value for the aquifer saturated thickness. A summary of publications, where either the non-linear or 
one of the linearized forms of the Boussinesq equation is solved to estimate stream-aquifer 
interaction, is given in Table 1.  
Clearly the most accurate solution of those presented in Table 1 is that of Serrano and Workman 
(1998), which is applicable even in cases of large changes in the ground water table level. For such 
cases analytical solutions of the linearized forms (7a) or (7b) of the Boussinesq equation may not 
give accurate results. To assess the performance of the linear solutions, the analytical solutions of 
Serrano and Workman (1998), Ostfeld et al. (1999) and Workman et al. (1997) have been applied to 
an interaction problem with the following characteristics: Wa=200 m, K=50 m day-1, Sy=0.3, h0(x)=1 
m and W(x,t)=0.02 m day-1. At time t=0+ε, where ε is an infinitesimally small number, the water level 
of the left stream was instantaneously raised from 1 m to 5 m and remained constant thereafter, i.e. 
hs1(t)=5 m. The water level of the right stream was held constant at 1 m, i.e. hs2(t)=1 m.  
Figure 4 shows a comparison of the water table levels predicted using the solutions of Ostfeld et al. 
(1999) and Workman et al. (1997) with the water table predicted using the solution of Serrano and 
Workman (1998). In applying the solutions of Ostfeld et al. (1999) and Workman et al. (1997), three 
different approaches have been used to estimate a mean value for the aquifer saturated thickness: 
(a) h  was assumed equal to the initial water table level h0, (b) h  was defined as the average 
between the initial and steady state water table levels across the aquifer, designated by havg and (c) 
h  was taken equal to the average of the lowest and highest water table levels, denoted by hmin‗max. 
As it can be seen in Figure 4, among the two linear solutions, the solution of Ostfeld et al. (1999) 
gives results, which are closer to the non-linear solution of Serrano and Workman (1998). This is 
due to the difference in linearization of the Boussinesq equation. Equation (7a) is obtained from the 
non-linear Boussinesq equation (6) by treating h(x,t) inside the first space differential operator as a 
constant, with the assumption of small water table fluctuations compared to the mean saturated 
thickness of the aquifer. In deriving equation (7b), on the contrary, h(x,t) is treated as a variable, 
which is in better agreement with the non-linear Boussinesq equation. Another advantage of 
equation (7b) over (7a) is that for steady flow equation (7b) remains non-linear.  
Figure 5 shows the mean relative errors between the solutions of Ostfeld et al. (1999) and Workman 
et al. (1997) and the solution of Serrano and Workman (1998) for various sets of boundary 
conditions; hmax in the figure refers to the maximum water table level obtained at steady state. As 
expected, the error increases as the water table level change increases. The solution of Ostfeld et 
al. (1999) is superior to the solution of Workman et al. (1997) and the best estimate for h  seems to 
be havg.   
It is important to note that apart from the solutions referenced in Table 1, the analytical solutions 
presented in paragraph 2.1 for confined aquifers can also be applied to unconfined aquifers, under 
the assumption that changes of the water table level are small compared to the mean saturated 
thickness of the aquifer, since equation (7a) is similar to the non-homogeneous 1-D diffusion 
equation (5) if Sy is substituted by S and h  by D.     
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Table 1. Publications where the 1-D Boussinesq equation or one of its linearized forms is solved to 
estimate stream-aquifer interaction 

Reference Equation Initial  
conditions 

Boundary  
Conditions 

Solution method 

Marino (1973) (7b) with W(x,t)=0 h(x,0)=h0 (3a) or (3b) 
(4a) or (4b) 

⎩
⎨
⎧

>+
=

= 0t,h∆h
0t,h)t(h

0
0

s    

Laplace 
transforms 

Govindaraju 
and Koelliker 
(1994) 

(7a) with W(x,t)=0 h(x,0)=h0(x) (3a) 
)x(hlim)t,x(hlim 0xx ∞→∞→

=  

hs(t) can vary arbitrarily 
with time   

Laplace 
transforms and 
convolution 
integrals  

Workman et 
al. (1997)  

(7a) with 
W(x,t)=constant 

h(x,0)=h0(x) h(0,t)=hs1(t) 
h(Wa,t)=hs2(t)=constant 
hs1(t) can vary arbitrarily 
with time   

Variable 
separation 
method   

Kim and Ann 
(2001) 

(7a) with 
W(x,t)=constant 

h(x,0)=h0(x) h(0,t)=hs1(t)=constant 
h(Wa,t)=hs2(t)=constant 

Variable 
separation 
method    

Ostfeld et al. 
(1999) 

(7b) with W(x,t) 
given by an 
analytic function  

h(x,0)=h0(x) h(0,t)=hs1(t) 
h(Wa,t)=hs2(t) 
hs1(t), hs2(t) are given by 
analytic functions 

Laplace 
transforms 

Serrano and 
Workman 
(1998) 

(6) with 
W(x,t)=constant 

h(x,0)=h0(x) h(0,t)=hs1(t) 
h(Wa,t)=hs2(t) 
hs1(t), hs2(t) can vary 
arbitrarily with time   

decomposition 
method 

 
The second approach of deriving analytical solutions for unconfined aquifers by treating ground 
water flow as 2-D in the vertical x-z plane was taken by Higgins (1980), Neuman (1981), van de 
Giessen et al. (1994), Moench and Barlow (2000), Barlow et al. (2000) and Serrano (2003). Higgins 
(1980) considered the case of a horizontal, semi-infinite, homogeneous and isotropic aquifer 
bounded by a fully penetrating stream with no semipervious banks. Initially the water table level was 
assumed horizontal and the stream water level equal to the water table level. Ignoring elastic 
storage effects, i.e. assuming the aquifer material is rigid and the water is incompressible, as usually 
done for unconfined flow, ground water flow is described by the 2-D Laplace equation:  
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Time enters the problem through the kinematic boundary condition at the free surface, which after 
linearization and expanding it in a Taylor series about the initial water table level h0 (assuming that 
water table level fluctuations are small compared to the initial saturated thickness of the aquifer h0) 
can be written as: 
  

t
)t,h,x(h

K
S

z
)t,h,x(h 0y0

∂
∂

−=
∂

∂
                    (9) 

 
Higgins (1980) obtained a solution for the piezometric heads h(x,z,t), for a step change of the stream 
water level, using the variable separation method. 
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Figure 4. Water table levels predicted with the analytical solutions of Ostfeld et al. (1999),  

Workman et al. (1997) and Serrano and Workman (1998) 
 

 
Figure 5. Mean relative errors between the solutions of Ostfeld et al. (1999) and  

Workman et al. (1997) and the solution of Serrano and Workman (1998)  
for various sets of boundary conditions 
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Neuman (1981) extended the work of Higgins (1980) by accounting for elastic storage and 
considering the aquifer to be anisotropic. In this case equations (8) and (9) become:  
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where Kx and Kz are the hydraulic conductivities in the x and z directions, respectively. Neuman 
(1981) used Laplace transforms to obtain a solution for h(x,z,t).  
Van de Giessen et al. (1994) took an approach similar to Higgins (1980) but for a finite-width aquifer, 
bounded by two fully penetrating streams with no semipervious banks, with their water level 
variations being given by analytic functions. The authors made use of a Fourier series and 
eigenfunction expansion (Haberman, 1987) to solve the 2-D Laplace equation (8) for the appropriate 
initial and boundary conditions.  
Moench and Barlow (2000) presented Laplace-transform step response functions for the same 
interaction problem considered by Neuman (1981), taking additionally into account the stream 
semipervious banks. They also presented step response functions for a finite-width aquifer bounded 
at one end by a fully penetrating stream with or without semipervious banks and at the other end by 
an impermeable boundary. The Laplace domain solutions can be numerically inverted to the real-
time domain with the Stehfest (1970) algorithm. In the companion paper of Barlow et al. (2000) the 
step response functions were used in convolution integrals to derive aquifer responses to an 
arbitrarily varying stream water level.  
Serrano’s (2003) analytical solution is the most comprehensive of those that have been published for 
unconfined aquifers. He considered an anisotropic aquifer of finite width, bounded by two fully 
penetrating streams with no semipervious banks, with the stream water level fluctuations described 
by analytic functions. Serrano (2003) ignored elastic storage effects and was the first to consider the 
non-linear form of the kinematic boundary condition at the moving free surface: 
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where zwt denotes the water table level. The author used the decomposition method (Adomian, 
1994) to derive a solution for the piezometric heads h(x,z,t) and the water table level. Unlike 
previous solutions for 2-D vertical unconfined flow, Serrano’s (2003) analytical solution has the 
advantage of being applicable even in cases of large changes in the ground water table level. 
However, it requires an estimate of the initial distribution of piezometric heads h0(x,z) and of the 
vertical gradient near the free surface, which is not always possible.     
          
3. ANALYTICAL SOLUTIONS OF STREAM-AQUIFER INTERACTION: SOLUTION OF THE 
COUPLED STREAM FLOW AND GROUND WATER FLOW EQUATIONS 
Only four publications, those of Hunt (1990), Hantush et al. (2002), Hantush (2005) and Lal (2001), 
have been found in the literature, where both the stream flow and groundwater flow equations are 
considered in the development of the analytical solutions. Hunt (1990) used a perturbation 
procedure to derive an approximate solution that couples the kinematic wave equation for stream 
flow to 1-D horizontal unconfined ground water flow, normal to the stream flow direction, described 
by the linearized Boussinesq equation. The stream was assumed to be in perfect hydraulic 
connection with the aquifer, which could be of finite or infinite width. Hunt’s (1990) solution has a 
relatively simple form and is easily applied.   
Hantush et al. (2002) examined the stream-unconfined aquifer interaction problem shown in Figure 6 
(a). The aquifer was assumed homogeneous and isotropic, infinite in the x direction and bounded by 
impermeable boundaries in the y direction. Stream flow was approximated using a simple mass 
balance equation and the Muskingum linear storage relationship and groundwater flow was 
approximated by the 1-D, in the x direction, linearized Boussinesq equation. Hantush et al. (2002) 
used Laplace transforms and convolution integrals to derive solutions for the stream discharge and 
the seepage at the stream aquifer interface due to an arbitrary stream inflow hydrograph. The work 
of Hantush et al. (2002) was extended by Hantush (2005) who took into account (a) aquifer recharge 
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or evapotranspiration and (b) hillslope runoff during storm events or evaporation from the stream 
surface during inter-storm periods.  
Lal (2001) considered the case of stream-aquifer interaction shown in Figure 6 (b). The domain is 
infinite in the x direction and semi-infinite in the y direction. The aquifer was assumed homogeneous 
and isotropic, separated from the stream by its semipervious bed and banks. Ground water flow was 
assumed 2-D horizontal, described by the linearized Boussinesq equation for an unconfined aquifer 
or the diffusion equation for a confined aquifer. Stream flow was assumed 1-D, described by the 
diffusion wave approximation to the Saint Venant equations. The estimation of seepage at the 
stream-aquifer interface was based on Darcy’s law. Lal (2001) used a perturbation procedure to 
solve the system of equations describing stream flow, ground water flow and seepage at the stream-
aquifer interface for a small amplitude sinusoidal variation of the stream water level. Lal’s (2001) 
solution is more comprehensive than the solutions of Hunt (1990), Hantush et al. (2002) and 
Hantush (2005). Hence it is indicated for the verification of integrated stream-aquifer models.  
 

 
Figure 6. Stream-aquifer interaction cases considered (a) by Hantush et al. (2002) and  

(b) by Lal (2001) 
   
An application example of Lal’s solution is given here, which can be used as a benchmark case for 
the verification of integrated models. To demonstrate the application of a model for this example, the 
integrated surface water-groundwater model IRENE (Spanoudaki et al., 2005; Spanoudaki et al., 
2006) is used. In the example, the aquifer is considered confined with a transmissivity of T=0.05 m2 
s-1 and a storage coefficient of S=0.15. The stream, which has a width of Ws=30 m and a bed slope 
of S0=10-5, flows on top of the confined aquifer, i.e. the stream penetration depth into the aquifer, d, 
is equal to zero and seepage between the stream and the aquifer occurs from the stream bed alone, 
which has a thickness of b=0.5 m and a hydraulic conductivity of Kb=0.0007 m s-1. Initially, the water 
depth in the stream is assumed equal to the uniform flow water depth H0=4.0 m computed from 
Manning’s equation for a discharge rate of q0=1.064 m2 s-1, using a Manning’s roughness coefficient 
value of n=0.03 m-1/3s. The stream is initially in hydraulic equilibrium with the aquifer, i.e. 
h(x,y,0)=hs(y,0) or h0(x,y)=hs0(y). At t=0, a continuous sinusoidal variation of the stream water level is 
introduced at the upstream boundary (y=0). The variation has the form: hs(0)=hs0(0)+αsin(2πt/τ); the 
amplitude of the variation is α=1.0 m and the period of the variation is τ=5 hrs.   
Lal (2001) expressed the solutions for the stream water level and the piezometric heads as: 
 

)yλftexp(α)y(h)t,y(h 0ss ++=  and ( )[ ]bxµbθyλftexpα)y,x(h)t,y,x(h 0 −++++=    (13) 
 
where f, λ, µ and θ are complex constants, f=f1+f2i, λ=λ1+λ2i, µ=µ1+µ2i and θ=θ1+θ2i, in which λ1, µ1 
represent the amplitude decay rate constants and λ2, µ2 the wave numbers for the stream water 
level and the piezometric heads variations along the stream and the aquifer, respectively, 
θ=µΤ/[0.5(2d+Ws)Kb] and f1, f2 are the time decay constant and the frequency, respectively, of the 
variation introduced at the upstream boundary. For the application example discussed here, f1=0 and 
f2=2π/τ. The complex constants λ and µ are obtained from the solution of the system of equations 
(14) where the unknown variables, explained in Table 2, are estimated from the data of the 
application example. The estimated values for λ, µ and θ are also shown in Table 2.  
   



136  SPANOUDAKI et al. 

2

r Λ
λ

P
i

Λ
µ

⎟
⎠
⎞

⎜
⎝
⎛−−=  and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+−=

ΛP
µP

exp
PΛ
Pµ

2
P4
1i

P2
1

Λ
λ

m

r

b

r
2

dd
        (14) 

In order to apply IRENE to the example, the length of the stream and the aquifer in the y direction is 
selected as L=50000 m and the aquifer width in the x direction as Wa=500 m. Using the analytical 
solution of Lal (2001) it is estimated that for y≥40000 m and x≥235 m the piezometric heads in the 
aquifer are only slightly affected by the sinusoidal variation of the stream water level. Therefore, the 
dimensions selected satisfy the infinite domain requirement of the analytical solution. The hydraulic 
conductivity of the aquifer is taken as K=0.001 m s-1 and the aquifer thickness as D=50 m at the 
upstream boundary and D=49.5 m at the downstream boundary, to follow the slope of the stream 
bed. All aquifer boundaries are considered impermeable. At t=0 the sinusoidal variation is introduced 
at the upstream boundary and IRENE is run until steady periodic state is reached. A comparison of 
the results of the analytical solution and IRENE for the stream water level variation along the stream 
and the piezometric heads variation across the aquifer is shown in Figure 7. 
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Figure 7. Comparison of the results of the analytical solution of Lal (2001) and IRENE:  
(a) variation of the stream water level for y=10000 m and y=25000 m and  
(b) variation of the piezometric heads across the aquifer for y=10000 m 

 
Table 2. Parameter values used for the application of the solution of Lal (2001) 

Variable  Explanation Value 
Λ characteristic length 12350 m 
Pr transmissivity ratio parameter 3.131x10-5 

Pb stream width parameter 0.016 
Pd stream depth parameter 9.717 
Pm stream resistance parameter 0.065 
λ1 amplitude decay rate constant along the stream -0.952 
λ2 wave number for the stream water level variation  -0.715 
µ1 amplitude decay rate constant along the aquifer -126.37 
µ2 wave number for the piezometric heads variation -126.37 
θ1  -0.233 
θ2  -0.233 
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4. CONCLUSIONS 
In this paper a critical review of important existing analytical solutions for transient stream-aquifer 
interaction is presented. The majority of the available analytical solutions are obtained by solving the 
equations, which describe ground water flow in the stream-aquifer system, while the stream flow 
equations are ignored; the stream water level fluctuations are considered to be known a priori and 
are used as a boundary condition for the solution of the ground water flow equations. Only four 
publications have been found in the literature, where the authors consider both the stream flow and 
the ground water flow equations in the development of the analytical solutions.  
The literature review showed that the problem of deriving analytical solutions for the interaction 
between a stream and a confined aquifer is usually reduced to solving the homogeneous or the non-
homogeneous 1-D diffusion equation for various boundary conditions such as a step change, a 
linear or a sinusoidal variation of the stream water level. Singh’s (2004) analytical solutions are the 
most comprehensive of those that have been published for confined aquifers and take into account 
the effect of both stream partial penetration and semipervious bed and banks on aquifer responses. 
The drawback in applying these solutions is that there is no equation available for estimating the 
stream resistance to flow.  
Analytical solutions for flow in unconfined aquifers interacting with streams are derived following two 
approaches. The first approach assumes 1-D horizontal ground water flow in a homogeneous and 
isotropic aquifer. In this case the 1-D Boussinesq equation describes ground water flow and is 
usually linearized prior to its solution. The work of Serrano and Workman (1998) is the only one 
found in the literature, where the non-linear Boussinesq equation is solved to estimate stream-
aquifer interaction. The second approach treats ground water flow as 2-D in the x-z plane. In most 
publications following this approach, the kinematic boundary condition at the free surface is 
linearized about the initial water table level. This introduces the limitation of small water table 
fluctuations compared to the initial saturated thickness of the aquifer. Serrano (2003) is the only 
author who considered the non-linear form of the kinematic boundary condition at the moving free 
surface. Therefore, its solution has the advantage of being applicable even in cases of large 
changes in the ground water table level.  
In the papers where both the stream flow and ground water flow equations are considered, ground 
water flow is assumed 1-D or 2-D horizontal, described by the linearized Boussinesq equation. 
Stream flow is in most cases approximated by the kinematic wave equation or using a simple mass 
balance equation and the Muskingum linear storage relationship. The most comprehensive solution 
is that of Lal (2001) who coupled the diffusion wave approximation to the Saint Venant equations 
with 2-D linearized Boussinesq equation for ground water flow.  
The authors find that, among the available analytical solutions of stream-aquifer interaction, the 
solutions of Serrano and Workman (1998) and Serrano (2003) are the most suitable for testing the 
ability of a model to predict the transient ground water table level and the solution of Lal (2001), 
being the most elaborate, is suitable for verifying the results of integrated stream-aquifer models for 
both the stream water level and the piezometric heads variations. 
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