

Effects of V_2O_5 and WO_3 loadings on the catalytic performance of V_2O_5 - WO_3 /TiO₂ catalyst for SCR of NO with NH₃

Ping Tao, Menghan Sun, Shengchun Qu, Chengwen Song^{*}, Chen Li, Yanyan Yin, Murong Cheng

College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian 116026, China

Received: 20/07/2016, Accepted: 09/11/2016, Available online: 29/03/2017

*to whom all correspondence should be addressed:

e-mail: chengwensong@dlmu.edu.cn

Abstract

 V_2O_5 -WO₃/TiO₂ catalysts were fabricated by a simple impregnation method. Effects of V₂O₅ and WO₃ loadings on the catalytic performance of V2O5-WO3/TiO2 catalyst for selective catalytic reduction (SCR) of NO with NH3 were investigated. Morphology and structure of the $V_2O_{5^{\text{-}}}$ WO₃/TiO₂ catalysts were characterised by XRD, SEM, XPS, and N₂ adsorption techniques. The XRD patterns of the V₂O₅-WO₃/TiO₂ catalyst are indexed to anatase-TiO₂. XPS spectra analysis confirms that V, Ti, W and O species exist on the surface of V_2O_5 - WO_3 /TiO₂ catalyst. V_2O_5 species are the main active sites in the process of SCR reaction. Increasing V₂O₅ loading in the V₂O₅-WO₃/TiO₂ catalysts can improve their catalytic performance. Exceeding 2 wt%, the catalytic performance of V2O5-WO3/TiO2 catalyst begins to decline because high V₂O₅ loading on TiO₂ speeds up the growth of anatase grains, which leads to the loss of catalytic activity. Appropriate WO₃ species can significantly improve the catalytic performance of V2O5-WO3/TiO2 catalysts. However, as the WO₃ loadings reaches 6 wt%, NO conversion decreases instead.

Keywords: V₂O₅-WO₃/TiO₂ catalyst; SCR; Impregnation methods; Chemisorbed oxygen

1. Introduction

Nitrogen oxides (NO_x), as major atmospheric pollutants (Yu et al., 2013; Liu et al., 2014), have caused a series of environmental issues, such as ozone depletion, acid rain, photochemical smog, particulate matters (PM2.5) transformation, greenhouse effect etc (Skalska et al., 2010; Kompio et al., 2012; Yang et al., 2014; Huang et al., 2015; Ma et al., 2015). In recent years, with the significant growth of environmental awareness, the environmental problems arising from nitrogen oxides (NOx) have been paid more attention. Facing the rising social dissatisfaction with the state of the environment, Governments, especially in Europe, Japan, the United States and China (Gao et al., 2013; Jiang et al., 2016), have enacted a series of stringent emission regulations. Also, many researchers develop various promising technologies, such as NO_x storage and reduction (NSR), the lean NO_x trap (LNT), and selective catalytic reduction (SCR) of NO_x with ammonia, to solve those issues. Among these methods, NSR usually requires a large amount of fuel to create a reductive atmosphere. LNT is relatively simple and efficient, but it needs expensive platinum group metal (PGM) (Herreros *et al.*, 2014; Gu *et al.*, 2015; Raptotasios *et al.*, 2015; Seo *et al.*, 2015; Wang *et al.*, 2015;). SCR is considered to be the most efficient technology due to its high efficiency, selectivity and economy, and becomes the leading NO_x control strategy for decades (Shakya *et al.*, 2015; Zhang *et al.*, 2015).

Many catalysts have been reported to be adopted for the SCR reaction, such as loaded V, Cu, Fe and Mn species over TiO₂, Al₂O₃, AC and zeolites supports (Leistner and Olsson, 2015; Usbertia et al., 2015; Romero-Sáez et al., 2016). The most important catalyst currently used for SCR is based on V2O5-WO3/TiO2 catalyst because it has a relatively high activity and N₂ selectivity at 300-400°C. Up to now, many works on the preparation of V2O5-WO3/TiO2 catalysts and their application on the selective catalytic reduction (SCR) of NO with NH₃ were reported. Rodella and Mastelaro investigated the influence of the vanadium load and calcination temperature on the structural characteristics of the V₂O₅/TiO₂ system obtained by the sol-gel method, and proved it is useful to modify the structure of the V₂O₅/TiO₂ system by adjusting different amounts of vanadium and calcination temperatures (Rodella and Mastelaro, 2003). Kobayashi and Hagi reported their work on the V₂O₅-WO₃ catalysts loaded on the Ti-rich TiO₂-SiO₂-SO₄²⁻ by the coprecipitation method, and clarified the effect of active components and supports on activities in the selective catalytic reduction of NO by NH₃ (Kobayashi and Hagi, 2006). Djerad et al. synthesized V2O5-WO3/TiO2 catalysts by the sol-gel method, and found the catalytic behavior of V2O5-WO3/TiO2 catalyst is strongly dependent on V2O5 content (Djerad et al., 2004). Dong et al., investigated the effect of the pH value of vanadium precursor solution on the catalytic performance of V2O5-WO3/TiO2 catalysts through wet impregnation, and indicated that high de-NO_x activity of the V₂O₅-WO₃/TiO₂ catalysts can be obtained by enhancing the precursor solution acidity in the preparation process (Dong et al., 2014). Pang et al., demonstrated that ultrasound-assisted impregnation method can promote the strong interaction between the V_2O_5 and TiO_2 -WO₃ support and stabilize V₂O₅ in the reduced state (Pang et al.,

2014). Zhang et al., fabricated the V₂O₅-WO₃/TiO₂ catalyst by a sol-gel method, and investigate the interaction of V, W and Ti species for the improvement of the catalytic activity in the SCR reaction. They found that WO₃ could interact with TiO₂ to improve the electrons transfer, and the WO₃ hybridization with V₂O₅ could also improve the reducibility and formation of reduced V₂O₅ species (Zhang et al., 2015). These previous studies have shown that the catalytic properties of V2O5-WO3/TiO2 catalysts are markedly influenced by some parameters, such as preparation methods and conditions, concentration of the active component etc. In this study, we synthesized V₂O₅-WO₃/TiO₂ catalysts using a simple impregnation method, investigated the morphology and structure characteristics of the V_2O_5 -WO₃/TiO₂ catalysts by XRD, SEM, XPS, and N_2 adsorption techniques, and further illustrated the effects of V₂O₅ and WO₃ loadings on the catalytic performance of V_2O_5 -WO₃/TiO₂ catalyst in the selective catalytic reduction (SCR) of NO with NH₃.

2. Experimental

2.1. Preparation of V₂O₅-WO₃/TiO₂ catalyst

The V₂O₅-WO₃/TiO₂ catalyst was prepared by impregnation method. Sodium Tungstate Dihyrate (Na₂WO₄) (WO₃ loadings were 1 wt%, 3 wt%, and 6 wt%, respectively) and 0.96 g oxalic acid $(H_2C_2O_4)$ were dissolved in 6.8 mL deionized water under magnetic stirring until they completely dissolved. Then 8 g commercial anatase TiO₂ powder was added into the above solution under stirring. for 2 h at room temperature. After that, the above mixture was dried at 80 °C for 12 h, and then it was grinded and subsequently calcined at 450 °C for 4h. Ammonium metavanadate (NH₄VO₃) (V₂O₅ loadings were 0.5 wt%, 1.5 wt%, and 2 wt %, respectively) and 0.248 g oxalic acid were completely dissolved in 6.8 mL deionized water under magnetic stirring at room temperature. After TiO₂-WO₃ powder was introduced in the solution under stirring for 2 h, the above mixture was dried at 80 °C for 12 h. Then it was grinded and subsequently calcined at 450 °C for 4 h. Finally, the V_2O_5 -WO₃/TiO₂ powder was obtained, which was referred as Vx%TiWy%. For example, V1.5%TiW6% meant the catalyst with 1.5 wt% V_2O_5 and 6 wt% WO₃ loadings.

2.2. Catalytic activity measurement

The activity measurements were carried out in a fixed-bed quartz reactor which contained 4.00 g catalysts of 20 mesh and 1.15 g quartz sand (another 1.15 g quartz sand to control air velocity). The feed gas mixture contained 0.05 vol % NO, 0.08 vol % NH₃, 2.5 vol% O₂ and balanced N₂ at a flow rate of 330 mL/min controlled by mass flow meters. The reaction temperature was increased to 550 °C in a heating rate of 5 °C /min. The NO conversion was calculated by testing the NO concentration at the inlet and outlet of reactor according to China National Standard (GB/T 8969-1988).

2.3. Characterization

X-ray diffraction (XRD) patterns of V_2O_5-WO_3/TiO_2 catalysts were recorded using a D/Max-2400 diffractometer (Cu K α

radiation, $\lambda = 1.54055$ Å) in a range of diffraction angle 20 from 10 ° to 80 ° to analyze the diffraction peaks of V₂O₅-WO₃/TiO₂ catalysts. The pore structure properties of V₂O₅-WO₃/TiO₂ catalysts was characterized by using a Quantachrome Autosorb-iQ automated gas adsorption system with liquid nitrogen (at 77 K). The morphology of V₂O₅-WO₃/TiO₂ catalysts was observed by a Philips XL30 FEG scanning electron microscope (SEM). X-ray photoelectron spectroscopy (XPS) of V₂O₅-WO₃/TiO₂ catalysts was carried out on a Thermo Scientific ESCALAB 250 spectrometer with a monochromation Al Ka source.

3. Results and discussion

3.1. Effect of V_2O_5 loadings on the catalytic performance of V_2O_5 -WO₃/TiO₂ catalyst

Fig. 1 shows the typical XRD patterns of V₂O₅-WO₃/TiO₂ catalysts at different V₂O₅ loadings. All the diffraction peaks $(2\theta=25.44^{\circ}, 38.10^{\circ}, 48.17^{\circ}, 54.38^{\circ}, 55.13^{\circ}, 62.75^{\circ}, 70.48^{\circ}, 75.30^{\circ})$ are indexed to anatase-TiO₂ (PDF#21-1272) (Zhang *et al.*, 2015). In addition, we also notice that the crystalline phase of V₂O₅ is not detected in all the XRD patterns, which may be attributed to low amounts of V₂O₅ in these catalysts, and thus no obvious diffraction peaks are observed. Furthermore, there are almost no significant differences on diffraction peaks with the increase of V₂O₅ loadings. Therefore, we can conclude that the particle size and crystal phase have little change by V₂O₅ loadings.

Figure 1. XRD patterns of V₂O₅-WO₃/TiO₂ catalyst at different V₂O₅ loadings

Fig. 2 depicts the high-resolution spectra of V2p, W4f, Ti2p and O1s, which suggests that these species exist on the surface of V₂O₅-WO₃/TiO₂ catalyst. As shown in Fig. 2a, three kinds of V species can be distinguished in the V2p spectrum. The binding energies at 514.88 eV, 516.08 eV and 516.98 eV are attributed to V³⁺2p_{2/3}, V⁴⁺2p_{2/3} and V⁵⁺2p_{2/3}, respectively, and V mainly exists as the V⁺⁵ oxidation state on the V₂O₅-WO₃/TiO₂ catalyst (Li *et al.*, 2015). Fig. 2b presents the W4f_{7/2} and W4f_{5/2} peaks in the XPS spectra, which are located at 36.18 eV and 37.48 eV, respectively, indicating the W⁶⁺ oxidation state. Fig. 2c shows the XPS spectra for Ti2p of V₂O₅-WO₃/TiO₂ catalyst. The two peaks at 464.18 and 458.58 eV are ascribed to Ti2p_{1/2} and Ti2p_{3/2}, respectively, suggesting that Ti exists as the Ti⁺⁴ state.

Figure 2. XPS spectra of V₂O₅-WO₃/TiO₂ catalysts: (a) V2p spectrum, (b) W4f spectrum, (c) Ti2p spectrum, and (d) O1s spectrum

Fig. 2d shows the O1s peaks of V₂O₅-WO₃/TiO₂ catalyst which can be fitted into two peaks. The binding energy at 529.68 eV 530.48 eV are referred to as the lattice oxygen (O β) and the chemisorbed surface oxygen (O α), respectively (Ref 24). Generally, the chemisorbed surface oxygen (O α) has a significant effect on the deep oxidation reactions of reducing substances. Therefore, the presence of the chemisorbed surface oxygen (O α) will be beneficial to the SCR reaction. Fig. 3 is the typical SEM images of as-prepared V₂O₅-WO₃/TiO₂ catalysts at different V₂O₅ loadings (0.5 wt%, 1.5 wt%, and 2 wt%). The particles of V₂O₅-WO₃/TiO₂ catalysts show the sphere-like morphology with ranging from 30 to 50 nm. These spherical particles condense to form agglomerates. There are no apparent differences between the V₂O₅-WO₃/TiO₂ catalysts with 0.5 wt% and 1.5 wt% V₂O₅ loadings. As for 2 wt% V₂O₅ loading, the aggregations of catalytic particles are slightly serious.

Figure 3. SEM images of V2O5-WO3/TiO2 catalysts: (a) V0.5%TiW6%, (b) V1.5%TiW6%, (c) V2%TiW6%

Fig. 4 shows NO conversion for the V₂O₅-WO₃/TiO₂ catalysts at different V₂O₅ loadings as a function of temperature from 100 to 550 °C. Obviously, the NO conversion for all the prepared catalysts increases significantly with increasing reaction temperature below 300 °C, and then reaches a steady state. When the reaction temperature is above 400 °C, the NO conversion begins to decrease. Among these catalysts, the two catalysts without V₂O₅ loadings (TiW1% and TiW6%) demonstrate low catalytic activity and narrow active windows. When V₂O₅ species are loaded, the catalytic performance of the catalysts is significantly improved, and the maximal catalytic activity and widest active window (250 °C~500 °C) are achieves at 1.5 wt% of V_2O_5 loadings. All those imply that V_2O_5 species are the active sites on the V_2O_5 -WO₃/TiO₂ catalyst because they can decrease the activation energy of SCR reaction (Amiridis and Solar, 1996; Busca *et al.*, 1998). However, further increasing V_2O_5 loading to 2 wt%, the catalytic performance of the catalysts declines instead. The phenomenon may be attributed to that high V_2O_5 loadings on TiO₂ speed up the growth of anatase-TiO₂ grains, which leads to the loss of catalytic activity (Wang *et al.*, 2016). Therefore, the V_2O_5 loading of 1.5 wt% is recommended for NO conversion by $V_2O_5\mathchar`-WO_3\mathchar$

Figure 4. NO conversion for the V₂O₅-WO₃/TiO₂ catalysts with (a) 1 % WO₃ loading, (b) 6 % WO₃ loadings at different V₂O₅ loadings

3.2. Effect of WO₃ loadings on the catalytic performance of V_2O_5 -WO₃/TiO₂ catalyst

Fig. 5 provides the XRD patterns of V_2O_5 -WO₃/TiO₂ catalysts at different WO₃ loadings. Similarly, only diffraction peaks assigned to anatase-TiO₂ (PDF#21-1272) are observed, and diffraction peaks indexed to WO₃ are also not detected in the XRD patterns due to low WO₃ amount. Besides, there are no significant change on diffraction peak with the increase of WO₃ loadings, which implies that the particle size and crystal phase have little change by changing the WO₃ loadings. Fig. 6 shows the XPS spectra of W4f, V2p, Ti2p and O1s, which approves that these species exist on the surface of V₂O₅-WO₃/TiO₂ catalyst.

Figure 5. XRD patterns of V₂O₅-WO₃/TiO₂ catalyst at different WO₃ loadings

Figure 6. XPS spectra of V₂O₅-WO₃/TiO₂ catalyst: (a) W4f spectrum, (b) V2p spectrum, (c) Ti2p spectrum, (d) O1s spectrum

As shown in Fig. 6a, the binding energies at 37.48 and 36.38 eV are attributed to $W^{6+}4f_{5/2}$ and $W^{6+}4f_{7/2}$, respectively. Fig. 6b presents the information that three kinds of surface V species can be distinguished in the V2p spectrum. It is clear that the binding energies at 514.98, 515.78 and 516.48 eV are attributed to $V^{3+}2p_{2/3}$, $V^{4+}2p_{2/3}$ and $V^{5+}2p_{2/3}$, respectively, and $V^{\scriptscriptstyle +5}$ state mainly exists on the $V_2O_5\text{-}$ WO₃/TiO₂ catalyst. The two peaks at 464.08 and 458.38 eV are ascribed to $Ti^{4+}2p_{1/2}$ and $Ti^{4+}2p_{3/2}$, respectively (Fig. 6c). Fig. 6d shows the O1s peaks of V2O5-WO3/TiO2 catalyst which can be fitted into two peaks. The binding energy at 529.68 eV is referred as the lattice oxygen (O β) while at 530.48eV is referred to as the chemisorbed surface oxygen $(O\alpha)$. As we known, surface chemisorbed oxygen has been reported to be the most active oxygen and plays an important role in oxidation reactions. Therefore, high ratio of $O\alpha/(O\alpha+O\beta)$ on the catalyst surface may also be related

to a high SCR activity (Chen *et al.*, 2011). As shown in Fig. 6d and Fig. 2d, the ratio of $O\alpha/(O\alpha+O\beta)$ of V1.5%TiW3.5% is higher than that in V1.5%TiW6% which indicates that V1.5%TiW3.5% has a better catalytic performance than V1.5%TiW6%. Fig. 7 shows the SEM images of V₂O₅-WO₃/TiO₂ catalysts fabricated at different WO₃ loadings (1 wt%, 3.5 wt%, and 6 wt%). The spherical catalytic particles are obviously agglomerated from the SEM images, which sizes are uniform. There are no apparent differences between the three V₂O₅-WO₃/TiO₂ catalysts. Fig. 8 presents the adsorption-desorption isotherms of V₂O₅-WO₃/TiO₂ catalyst, which demonstrates typical type IV curve with the hysteresis loop. The BET surface area is calculated to be 30.07 m²/g, which shows a facilitation effect toward the SCR reaction.

Figure 7. SEM images of V₂O₅-WO₃/TiO₂ catalyst: (a) V1.5%TiW1%, (b) V1.5%TiW3.5%, (c) V1.5%TiW6%

Fig. 9 shows NO conversion for the V₂O₅-WO₃/TiO₂ catalysts at different WO₃ loadings as a function of temperature from 100 to 550 °C. When the catalyst without WO₃ loading (V1.5%Ti) is adopted, the NO conversion is only 70.86% at 200 °C, and decreases significantly above 400 °C, which indicates its low catalytic activity and narrow temperature window. When the WO₃ loadings in the catalyst are 1 wt% and 3.5 wt%, the NO conversion of the prepared catalysts increase to 98.86 % and 98.53 % at 200 ∘C, and almost no NO can be detected above 250 °C (250-450 °C). This is because that the WO₃ species improve the electrons transfer of the V2O5-WO3/TiO2 catalyst, which results in the increase of the superoxide ions, prompting the SCR reaction. Increasing WO₃ loadings in the catalyst to 6 wt%, the NO conversion increases with the increase of reaction temperature below 300 °C, and then it dramatically decreases. The catalyst shows low catalytic activity and the NO conversion is only 77.88 % and 73.65 % at 200 °C and 550 °C, respectively. Also, the temperature window of the V_2O_5 -WO₃/TiO₂ catalysts at 6 wt% of WO₃ loadings is narrow, which may be ascribed to that excessive WO3 loadings trap electrons to inhibit the formation of superoxide ions (Zhang and Zhong, 2013).

Figure 8. Nitrogen adsorption-desorption isotherms of V_2O_5 -WO₃/TiO₂ catalyst

Figure 9. NO conversion for the V_2O_5 -WO₃/TiO₂ catalysts at different WO₃ loadings

4. Conclusion

In summary, we report our works on the preparation of V_2O_5 -WO₃/TiO₂ catalysts using a simple impregnation method and their application on the selective catalytic reduction (SCR) of NO with NH₃. Increasing V_2O_5 loading in the V_2O_5 -WO₃/TiO₂ catalysts can improve their catalytic activities. However, when V_2O_5 loading exceeds 2 wt%, the activity of V_2O_5 -WO₃/TiO₂ catalyst begins to decline because high V_2O_5 loading on TiO₂ speeds up the growth of anatase-TiO₂ grains, which leads to the loss of catalytic activity. With the increase of WO₃ loadings, NO conversion is significantly promoted, however, when the WO₃ loadings reaches 6 wt%, NO conversion decreases instead due to the inhibition on the formation of superoxide ions.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (21276035, 21476034), the Scientific Research Project of Education Department of Liaoning Province (L2013203), the Natural Science Foundation of Liaoning Province (2014025014), the Science and Technology Foundation for Overseas Chinese Scholars, Ministry of Human Resources and Social Security of China, and the Fundamental Research Funds for the Central Universities (3132016327).

Reference

- Amiridis M.D. and Solar J.P. (1996), Selective Catalytic Reduction of Nitric Oxide by Ammonia over V₂O₅/TiO₂, V₂O₅/TiO₂/SiO₂, and V₂O₅-WO₃/TiO₂ Catalysts: Effect of Vanadia Content on the Activation Energy, *Ind. Eng. Chem. Res*, **35**, 978-981.
- Busca G., Lietti L., Ramis G. and Berti F. (1998), Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review, *Appl. Catal. B: Environ*, **18**, 1-36.
- Chen L., Li J.H. and Ge M.F. (2011), The poisoning effect of alkali metals doping over nano V_2O_5 - WO_3 /TiO₂ catalysts on selective catalytic reduction of NOx by NH₃, *Chem. Eng. J*, **170**, 531–537.
- Djerad S., Tifouti L., Crocoll M. and Weisweiler W. (2004), Effect of vanadia and tungsten loadings on the physical and chemical characteristics of V₂O₅-WO₃/TiO₂ catalysts, *J. Mol. Catal. A: Chem.*, **208**, 257–265.
- Dong G.J., Zhang Y.F., Zhao Y. and Bai Y. (2014), Effect of the pH value of precursor solution on the catalytic performance of V₂O₅-WO₃/TiO₂ in the low temperature NH₃-SCR of NOx, *J. Fuel. Chem. Technol*, **42**, 1455-1463.
- Gao Y., Luan T., Lv T., Cheng K. and Xu H.M. (2013), Performance of V₂O₅-WO₃-MoO₃/TiO₂ Catalyst for Selective Catalytic Reduction of NOx by NH₃, *Chinese. J. Chem. Eng*, **21**, 1-7.
- Gu H., Chun K.M. and Song S. (2015), The effects of hydrogen on the efficiency of NOx reduction via hydrocarbon-selective catalytic reduction (HC-SCR) at low temperature using various reductants, *Int. J. Hydrogen. Energ*, **40**, 9602-9610.
- Herreros J.M., George P., Umar M. and Tsolakis A. (2014), Enhancing selective catalytic reduction of NOx with alternative reactants/promoters, *Chem. Eng. J.*, **252**, 47–54.
- Huang X.M., Zhang S.L., Chen H.N. and Zhong Q. (2015), Selective catalytic reduction of NO with NH₃ over V_2O_5 supported on TiO₂ and Al₂O₃: A comparative study, *J. Mol. Struct*, **1098**, 289-297.

- Jiang K., Geng P., Meng F. and Zhang H. (2016), An extended Kalman filter for input estimations in diesel-engine selective catalytic reduction applications, *Neurocomputing*, **171**, 569– 575.
- Kobayashi M. and Hagi M. (2006), V₂O₅-WO₃/TiO₂-SiO₂-SO₄²⁻ catalysts: Influence of active components and supports on activities in the selective catalytic reduction of NO by NH₃ and in the oxidation of SO₂, *Appl.Catal. B: Environ.*, **63**, 104–113.
- Kompio P.G.W.A., Brückner A., Hipler F., Auer G., Löffler E. and Grünert W. (2012), A new view on the relations between tungsten and vanadium in V₂O₅-WO₃/TiO₂ catalysts for the selective reduction of NO with NH₃. J. Catal., 286, 237–247.
- Leistner K. and Olsson L. (2015), Deactivation of Cu/SAPO-34 during low-temperature NH3-SCR, *Appl. Catal. B: Environ*, 165, 192–199.
- Li Z.G., Li J.H., Liu S.X., Ren X.N., Ma J., Su W.K. and Peng Y. (2015), Ultra hydrothermal stability of CeO₂-WO₃/TiO₂ for NH₃-SCR of NO compared to traditional V₂O₅-WO₃/TiO₂ catalyst, *Catal. Today*, **258**, 11-16.
- Liu Z.M., Zhang S.X., Li J.H., Zhu J.Z. and Ma L.L. (2014), Novel V_2O_5 -CeO₂/TiO₂ catalyst with low vanadium loading for the selective catalytic reduction of NO_x by NH₃, *Appl. Catal. B: Environ*, **158–159**, 11–19.
- Ma Z.R., Wu X.D., Si Z.S., Weng D., Ma J. and Xu T.F. (2015), Impacts of niobia loading on active sites and surface acidity in NbOx/CeO₂--ZrO₂ NH₃--SCR catalysts, *Appl. Catal. B: Environ*, **179**, 380–394.
- Pang L., Fan C., Shao L., Yi J.X., Cai X., Wang J., Kang M. and Li T. (2014), Effect of V₂O₅/WO₃-TiO₂ catalyst preparation method on NOx removal from diesel exhaust *,Chinese. J. Catal*, **35**, 2020-2028.
- Raptotasios S.I., Sakellaridis N.F., Papagiannakis R.G. and Hountalas D.T. (2015), Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR, *Appl. Enger*, **157**, 814-823.
- Rodella C.B. and Mastelaro V.R. (2003), Structural characterization of the V₂O₅/TiO₂ system obtained by the sol-gel method, *J. Phys. Chem. Solids*, **64**, 833–839.
- Romero-Sáez M., Divakar D., Aranzabal A., González-Velasco J.R. and González-Marcos J.A. (2016), Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior, *Appl. Catal. B: Environ*, **180**, 210–218.
- Seo C.K. and Choi B. (2015), Physicochemical characteristics according to aging of Fe-zeolite and V₂O₅–WO₃–TiO₂ SCR for diesel engines, *J. Ind. Eng. Chem*, **25**, 239–249.
- Shakya B. M., Harold M. P. and Balakotaiah V. (2015), Simulations and optimization of combined Fe- and Cu-zeolite SCR monolith catalysts, *Chem. Eng. J*, **278**, 374–384.
- Skalska K., Miller J.S. and Ledakowicz S. (2010), Trends in NO_x abatement: A review, *Sci.Total Environ.*, **408**, 3976–3989.
- Usbertia N., Jablonskab M., Blasic M. D., Forzattia P., Liettia L. and Beretta A. (2015), Design of a "high-efficiency" NH3-SCR reactor for stationary applications, A kinetic study of NH₃ oxidation and NH₃-SCR over V-based catalysts, *Appl. Catal. B: Environ*, **179**, 185–195.
- Wang C., Li X., Xia F., Zhang H. and Xiao J. (2016), Effect of V₂O₅content on electrode catalytic layer morphology and mixed potential ammonia sensor performance, *Sensor. Actuat. B*, 223, 658–663.

- Wang J.H., Dong X.S., Wang Y.J. and Li Y.D. (2015), Effect of the calcination temperature on the performance of a CeMoOx catalyst in the selective catalytic reduction of NOx with ammonia, *Catal. Today*, **245**, 10–15.
- Yang J.C., Sun R., Sun S.Z., Zhao N.B., Hao N., Chen H., Wang Y., Guo H.R. and Meng Jianqiang. (2014), Experimental study on NO_x reduction from staging combustion of high volatile pulverized coals. Part 1, Air staging. *Fuel. Process. Technol*, **126**, 266–275.
- Yu W.C., Wu X.D., Si Z.C. and Weng D. (2013), Influences of impregnation procedure on the SCR activity and alkali resistance of V₂O₅–WO₃/TiO₂ catalyst, *Appl. Surf. Sci*, **283**, 209–214.
- Zhang Q.M., Song C.L., Lv G., Bin F., Pang H.T. and Song J.O. (2015), Effect of metal oxide partial substitution of V_2O_5 in V_2O_5 - WO_3/TiO_2 on selective catalytic reduction of NO with NH₃, *J. Ind. Eng. Chem*, **24**, 79–86.
- Zhang S. and Zhong Q. (2013), Promotional effect of WO₃ on O₂⁻ over V₂O₅/TiO₂ catalyst for selective catalytic reduction of NO with NH₃, *J. Mol. Struct. Catal. A: Chem*, **373**, 108–113.
- Zhang S.L. and Zhong Q. (2015), Surface characterization studies on the interaction of V_2O_5 - WO_3 /TiO₂ catalyst for low temperature SCR of NO with NH₃, *J. Solid. State. Chem*, **221**, 49–56.