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Abstract 

The scientific community has recognized the necessity for 
more efficiently selected inputs in artificial neural network 
models (ANNs) in river flows and has worked on this 
despite some shortcomings. Moreover, there is none or 
limited inclusion of ANN inputs coupled with atmospheric 
circulation under various patterns arising from the need of 
data downscaling for climate change predictions in 
hydrology domain. This paper presents the results of a 
novel multi-stage methodology for selecting input 
variables used in artificial neural network (ANN) models for 
river flow forecasting. The proposed methodology makes 
use of data correlations together with a set of crucial 
statistical indices for optimizing model performance, both 
in terms of ANN structure (e.g. neurons, momentum rate, 
learning rate, activation functions, etc), but also in terms of 
inputs selection. The latter include various previous time 
steps of daily areal precipitation and temperature data 
coupled with atmospheric circulation in the form of 
circulation patterns, observed river flow data and time 
expressed via functions of sine and cosine. Additionally, the 
no-linear behavior between river flow and the respective 
inputs is investigated by the ANN configuration itself and 
not only by correlation indices (or other equivalent 
contingency tools). The proposed methodology revealed 
the river flow of past four days, the precipitation of past 
three days and the seasonality as robust input variables. 
However, the temperature of three past days should be 
considered as an alternative against the seasonality. The 
produced models forecasting ability was validated by 
comparing its one-step ahead flow prediction ability to two 

                                                                 
 

other approaches (an auto regressive model and a genetic 
algorithm (GA)-optimized single input ANN).   

Keywords: Artificial neural networks, optimization, input 
variables selection, flow forecasting, atmospheric 
circulation, seasonality, hydrological evaluation indices 

1. Introduction  

Hydro-meteorological and water resources systems are 
extremely complex, nonlinear and dynamic in nature, 
involving a variety of physical variables. Such systems can 
be modeled via ANNs or various hybrid schemes of them 
(Maier and Dandy, 2001; May et al., 2008; Maier et al., 
2010). One of the most important steps of ANN model 
development process is the determination of an 
appropriate set of input variables (Maier and Dandy, 2001; 
May et al., 2008) along with the determination of the 
parameters of the network. 

Considering the development of a forecasting model 
including lags, the minimum number of variables should be 
used as inputs to the ANN model in order to increase 
computational efficiency, minimize redundancy, reduce 
noise and increase the interpretability of the model (May 
et al., 2008). The significance of input variables selection 
has been assessed by a number of specific techniques 
embodied into two categories, namely model-based (Maier 
et al., 2010) and model-free approaches (May et al., 2008; 
Fernando et al., 2009). The computational efficiency of the 
input selection approach is of great significance especially 
when large data sets have to be modeled as it usually 
occurs in hydrological modeling. Indicatively, criterions for 
input selections can be the correlation index, the mutual 
information (Fernando et al., 2009), the partial mutual 
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information algorithm of Sharma (Sharma, 2000; Bowden 
et al., 2005), the average shifted histograms (Fernando et 
al., 2009], the Hampel distance outlier stopping criterion 
for large sample sizes (Davies and Gather, 1993), the 
ensemble empirical mode decomposition (Wang et al, 
2015) etc. Most modelers use cross-, auto-, and partial 
auto-correlations between the input-output variables 
assuming linear relationship (even though it is not correct) 
with significant lags (Nayak et al., 2013). Not often the 
input selection is connected to the forecasting model with 
a retrospective way based on binary-coded particle swarm 
optimization (Taormina et al, 2015), with exotic data-
preprocessing techniques, such as spectrum analysis (Wu 
et al, 2009; Chau et al, 2010) or with different kind of 
algorithms, such as differential evolution, artificial bee 
colony, ant colony optimization (Chen et al, 2015). From a 
climate standpoint, numerous studies have established 
links between large-scale atmospheric circulation in the 
mode of North Atlantic Oscillation (Lintner and Chiang, 
2007), El Niño Southern Oscillation (Philander, 1990) and 
circulation patterns (Panagoulia et al., 2006a; Panagoulia et 
al., 2006b; Panagoulia et al., 2008) with hydro-
meteorological variables in various time scales. In almost 
all cases the input variables are the precipitation, the 
temperature, the groundwater level, the load flow of 
previous time steps, while rarely other variables are found, 
such as tree-ring diameters by dendrochronology (Gholami 
et al, 2015). In this paper, the precipitation and 
temperature coupled with atmospheric circulation are 
included for inputs selection in ANN models river flow 
forecasting with the aim to explore the selection process of 
such variables. 

The objective of this study is to obtain via a systematic 
manner an efficient selection of input variables for flow 
forecasting of the next day. As input data the time series of 
precipitation and temperature formulated through 
circulation patterns, the observed river flow and the time 
expressed via functions of sine and cosine (seasonality) are 
considered. Following, a stepwise multi-stage 
methodology is developed, tested and applied for selecting 
which hydro-meteorological input variables will be used. In 
first stage it makes use of cross-, auto-, and partial auto-
correlations, which is similar to previous input selection 
methodologies and can be replaced by Fourier spectrum 
analysis etc. In second stage the no-linear ANN behavior is 
explored by the ANN construction with one input 
(precipitation, temperature, river flow of past time points) 
and one output (current river flow). In the third stage the 
investigation of the respective behavior is extended by the 
ANN construction with more inputs of the same kind and 
at the last stage all possible inputs are combined. The 
inputs selection for each stage (2nd to 4th) is based on a set 
of crucial statistical indices which is able to exploit 
nonlinear input variables and through an appropriate 
process can also optimize the parameters of the same 
network. The approach is compared against two 
alternatives, an auto-regressive model with only linear 
characteristics but very fast creation time, and a GA-based 
optimized ANN architecture (Kousiouris et al, 2012), 
investigating a number of different parameters and trade-

offs in network design (training functions, different types 
of neuron activation functions, size and number of layers 
etc.), but depending only on the previous values of the 
forecasted metric, in order to showcase the trade-off of not 
selecting multiple hydrological criteria but dealing only 
with the data as a time series. Numerous alternatives exist 
(e.g. SVMs); however the major benefit of the latter 
(optimal training in the given dataset) exists only for the 
usage of linear kernels in their structure. In our case the 
existence of linear features is represented in the AR model 
and in the pure linear combinations of activation functions 
in the GA-ANN compared method.   

2. Methodology 

A stepwise multi-stage methodology selection of ANNs 
input variables is proposed in Fig.1, based in Fortran, which 
includes the next steps:  

 1st stage – Input variables pre-selection 

In this stage the goal is to find out the time range of the 
input –output variables, which influence the output 
variable, that is the river flow-discharge Q(t). The time kQ 
which involves discharges from previous days is 
determined by the auto-correlation and partial auto-
correlation coefficients, while through the cross-
correlation coefficients the time intervals kP and kT for the 
precipitation P(t) and temperature T(t) are calculated. 
However, this statistical analysis does not identify which 
variables are not needed to be taken into account due to 
data overlapping. 

 2nd stage – Input variables selection based on 
ANNs with one input  

The first step of selecting input variables based on ANNs 
that have only one input is introduced. Particularly, for 
each input kind (discharge, temperature and precipitation) 
an ANN with one input and one output variable is 
constructed. I.e. since the involved discharges from the 
first stage resulted in kQ, then the following kQ ANNs are 
constructed with the form of {(input)→(output)}:{(Q(t-1)) 
→(Q(t))}, {(Q(t-2))→(Q(t))}, ..., {(Q(t-kQ))→(Q(t))}. 11 
statistical indices are used to decide which one input - one 
output ANN per variable kind expresses at the best possible 
way the non-linear relationship between the discharge Q(t) 
and each input kind (more details in Section 2.E). This way 
the time period kQ/ which involves the discharges of past 
days is defined, namely the Q(t-1), ..., Q(t-kQ/), the time 
period kP/ which involves the precipitation of current day 
P(t) and past days P(t-1), ..., P(t-kP/), as well as the time 
period kΤ/ involving the temperature of  current day T(t) 
and past days T(t-1), ..., T(t- kΤ/ ). From this step, the 
number of past variables of the same kind which are 
involved to Q(t) is determined. 

 3rd stage – Input variables selection based on ANNs 
with one kind of variables 

The second selection step of ANN-based input variables 
with more than one input of the same kind is performed.  
More specifically, taking into account the kQ/ involved 
discharges resulted from the second stage, the physical 
structure of the problem and the user’s desire to involve 



 

unified sets of same kind of variables in the forming model, 

the following ANNs of shape {(inputs)  (outputs)} are 
constructed: {(Q(t-1), Q(t-2))→(Q(t))}, {(Q(t-1), Q(t-2), Q(t-
3))→(Q(t))}, ..., {(Q(t-1), Q(t-2), Q(t-3), …, Q(t-kQ))→(Q(t))}, 
{(Q(t-2), Q(t-3))→(Q(t))}, ..., {(Q(t-2), Q(t-3), …, Q(t-
kQ))→(Q(t))}, with a total number of new ANNs equal to  
(kQ/∙(kQ/-1))/2.  

Similarly, ANNs are constructed for the precipitation and 
for the temperature. Subsequently, the ANN whose trained 
parameters lead to the relative majority of better values of 
statistical evaluation indices is selected against other 
settings selected (more details in Section 2.E). The ANNs 
with multiple inputs of the same kind - one output that 

express at the best possible way the non-linear relationship 
between the discharge Q(t) and each input kind are 
selected defining the specific time period [kQ1, kQ2] for the 
discharges, [kP1, kP2] for precipitation and [kT1, kT2] for 
temperature. Additionally, the effect of seasonality is 
separately examined as a 4th kind of input variables through 
the pair of periodic functions cos(2∙π∙d/daysyear) and 
sin(2∙π∙d/daysyear) (Hippert et al, 2001), where d is the serial 
number of current day in the current year (from the start 
of the year) and daysyear  is the number of days of the 
current year. 

 

 

 

Figure 1. Flow chart of the proposed input variables methodology

 4th stage – Combination of input variables sets 

The fourth step of input variables selection by using ANNs 
is performed, by the combination of the sets of same kind 
variables determined by the previous stage, which are the 

sets of discharge {Q(t-kQ1) , Q(t-kQ1-1), ..., Q(t-kQ2)}, 
precipitation {P(t-kP1) , P(t-kP1-1), ..., P(t-kP2)},  temperature 
{T(t-kT1) , T(t-kT1-1), ..., T(t-kT2)} and seasonality 
{cos(2∙π∙d/daysyear), sin(2∙π∙d/daysyear)}.  
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 Optimized ANN Construction and rating  

In stages 2, 3, 4 of the proposed methodology a number of 
ANNs are constructed, trained and rated on their 
effectiveness. The basic steps of a typical ANN optimization 
method are presented in Fig. 2. More specifically, the 
ANN’s training algorithm is the stochastic training back-
propagation process with decreasing functions of learning 
rate and momentum term, for which an optimization 
process is conducted regarding the crucial parameters 
values gradually, such as the number of neurons, the kind 
of activation functions, the initial values and time 
parameters of learning rate and momentum term, the kind 
of activation functions and their parameters, the training 
process uses the training data set, while the optimization 
ANN parameters process the evaluation set. The specific 
method was selected since it is the most commonly 
available in various ANN implementation toolboxes. The 
performance of each ANN structure is evaluated using the 
evaluation set based on eleven criteria (Jain and Prased, 
2003), which are the root mean square error (RMSE), the 
correlation index (R), the mean absolute percentage error 
(MAPE), the mean percentage error (MPE), the mean 
percentage error (ME), the percentage volume in errors 
(VE), the percentage error in peak (MF), the normalized 
mean bias error (NMBE), the normalized root mean bias 
error (NRMSE), the Nash-Sutcliffe model efficiency 
coefficient (E) and the modified Nash-Sutcliffe model 
efficiency coefficient (E1). In an effort to have a generic 
optimization approach, including various hydrological 
criteria, the use of all these indices was used through voting 
analysis. Each criterion may have one specific interest for 
an adopter of the model, as indicated in the analysis in 
Section 4. Having all criterions helps to select a model 
based on a given approach that may be preferred over 
others (e.g. RMSE for high flows etc.), having all 11 searches 
for a more generic solution. Finally, the generalization of 
ANNs is checked by the discharge forecasting of the 
“unknown” test set. 

 

Figure 2. Flow chart of the ANN optimization method 

3. Case Study  

 Study catchment and observed data   

The Mesochora catchment drained by Acheloos’ river in 
central-western Greece was selected for this study due to 
the partial diversion of the river flow in order to irrigate the 
arid Thessaly plain and boost hydropower generation in the 
surrounding region. The catchment has an area of 633 km² 
and extends nearly 32 km from north (39º42’) to south (39º 
25’) with an average width of about 20 km. Daily 
precipitation was available at 12 stations for the period of 
1972-1992, while mean daily temperature was collected 
from 4 stations for the period of 1972-1992. The 
precipitation and temperature variability at the stations 
was determined by conditioning on circulation patterns 
(CP) types (Panagoulia et al., 2006a; Panagoulia et al., 
2006b; Panagoulia et al., 2008). For ANNs’ training process 
three sets are formed: training set: 80% vectors of time 
period 1972-86, evaluation set: 20% vectors of time period 
1972-86 and test set: 100% vectors of time period 1987-92. 

 1st stage – Input variables pre-selection 

The auto-correlation and partial auto-correlation 
coefficients of flow, the correlation coefficients between 
flow and precipitation, and flow and temperature are 
defined for the use set data of 1972-86 period and the 
check set data of 1987-92 period (see Figs. 3 to 6). In this 
context, the typically selected number of parameters in a 
first estimation could be: kQ = 9, kP = 5, kT = 5~20.  

 

Figure 3. Auto-correlation of flow for the periods 1972-
1986 and 1987-1992 

 

Figure 4. Partial auto-correlation of flow for the periods 
1972-1986 and 1987-1992  1 
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 2nd stage – Input variables selection based on 
ANNs with one input 

For reasons of certainty and comparison, we selected for 
investigation the flows of 20 past days and the precipitation 
and temperature both of current day and 20 past days.  In 
this case, 62 ANNs are constructed, i.e. ANN model with 
serial number 1 (Νο.1) has formed input vector by the flow 
of the past day Q(t-1) and the output vector by the current 
flow Q(t). 

Several parameters have to be selected:  

 the number of neurons of the hidden layer { 1 to 
20 with incremental step 1}, 

 the initial value {0.05, 0.01, 0.15, …, 1.00} and time 
parameter {100, 200, …, 1600} of momentum 
term and training rate, 

 the type of activation functions of the layers 
(linear, hyperbolic tangent, hyperbolic sigmoid) 
with multiplicative factor {0..05, 0.10, …, 1.0} for 
the hidden layer and  {0..05, 0.10, …, 0.7} for the 
output layer.    

 

Figure 5. Correlation of flow and precipitation for the 
periods 1972-86 and 1987-92 

 

Figure 6. Correlation of flow and temperature for the 
periods 1972-86 and 1987-92 

For each ANN 949 scenarios of different ANN parameter 
calibrations have been examined based on optimization 
process of Fig. 2 instead of 5,160,960,000 cases. The graphs 
between the current flow and past days flow essentially 
substitute the graphs of auto-correlation coefficients of the 
1st stage. From Figure 7 a systematic improvement of 
correlation values is noted as well as a stabilization of it 
after 5-6 past days. Similar conclusions are drawn from the 
study of the statistical indices RMSE, MAPE, MPE, MF, 
NRMBE, E, and E1. In total, kQ

/
 =6, kP

 /
 = 5, kT

 /
 =3 have been 

selected.  

 3rd stage – Input variables selection based on ANNs 
with one kind of variables 

62 ANNs are constructed which are presented in Table 1.  

Each ANN is stepwise optimized as described previously, 
with the same parameters as the previous stage, except:  

 the number of neurons of the hidden layer { 1 to 
25 with incremental step 1}, 

 the initial value {0.05, 0.01, 0.15, …, 1.00} and time 
parameter {100, 200, …, 2000} of momentum 
term and training rate    

 

Figure 7. Correlation coefficient r between Q(t) & Q(t-k) 
for recorded data sets 1972-1986 and 1987-1992, for 

ANNs with training set, for ANNs with evaluation set, and 
for ANNs with test set 

Table 1. ANNs Construction for 3rd stage of proposed methodology - Input Variables Selection based on ANNs with Multi-
Inputs of the same variable kind 

No. 

ANN 

Input variables No. 

ANN 

Input variables No. 

ANN 

Input variables 

From To From To From To 

63 Q(t-1) Q(t-2) 78 P(t) P(t-1) 93 T(t) T(t-1) 

64 Q(t-1) Q(t-3) 79 P(t) P(t-2) 94 T(t) T(t-2) 

65 Q(t-1) Q(t-4) 80 P(t) P(t-3) 95 T(t) T(t-3) 

66 Q(t-1) Q(t-5) 81 P(t) P(t-4) 96 T(t-1) T(t-2) 

67 Q(t-1) Q(t-6) 82 P(t) P(t-5) 97 T(t-1) T(t-3) 

68 Q(t-2) Q(t-3) 83 P(t-1) P(t-2) 98 T(t-2) T(t-3) 

69 Q(t-2) Q(t-4) 84 P(t-1) P(t-3) 99 cos(2∙π∙d/daysyear), 
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70 Q(t-2) Q(t-5) 85 P(t-1) P(t-4) sin(2∙π∙d/daysyear) 

71 Q(t-2) Q(t-6) 86 P(t-1) P(t-5)   

72 Q(t-3) Q(t-4) 87 P(t-2) P(t-3)   

73 Q(t-3) Q(t-5) 88 P(t-2) P(t-4)   

74 Q(t-3) Q(t-6) 89 P(t-2) P(t-5)   

75 Q(t-4) Q(t-5) 90 P(t-3) P(t-4)   

76 Q(t-4) Q(t-6) 91 P(t-3) P(t-5)   

77 Q(t-5) Q(t-6) 92 P(t-4) P(t-5)   

For each statistical evaluation index the ANN with different 
inputs that presents the better behavior is identified. The 
corresponding data are summarized into Table 2. 
Additionally, Table 3 portrays how many times an input has 
been proposed for use by the various statistical indices if 

absolute majority (at least 6 from 11 criteria) has been 
achieved. Combining the results of the training and 
evaluation sets, the use of daily flow values Q(t-1) to Q(t-
4), daily precipitation values conditioned on CPs data P(t) 
to P(t-3), and temperature data ,conditioned on CPs, T(t) to 
T(t-3) is suggested. 

Table 2. Study of ANNs inputs variables scenarios per input kind with the best behavior per statistical index and set 
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NRMBE t-1 t-4 t-1 t-2 t-1 t-4 t t-5 t t-5 t t-5 t t-3 t t-2 t t-2 

E t-1 t-4 t-1 t-6 t-1 t-4 t t-5 t t-3 t t-4 t t-3 t-1 t-1 t t-3 

E1 t-1 t-3 t-1 t-3 t-1 t-3 t t-5 t t-5 t t-5 t-2 t-3 t-2 t-3 t t-3 
 

Table 3. Determination of ANNs inputs sets per kind of input variable based on activation of statistical indexes for training 
set, evaluation set and test set  

Daily flow Inputs Q(t-1) Q(t-2) Q(t-3) Q(t-4) Q(t-5) Q(t-6) 

Set 

Training 8 8 7 7 0 0 

Evaluation 8 10 7 5 5 4 

Test 8 11 11 5 1 0 

Daily precipitation Inputs P(t) P(t-1) P(t-2) P(t-3) P(t-4) P(t-5) 

Set 

Training 8 8 8 5 5 5 

Evaluation 9 10 6 6 5 3 

Test 8 8 5 8 5 2 

Daily mean temperature Inputs T(t) T(t-1) T(t-2) T(t-3)   

Set 

Training 10 7 7 6   

Evaluation 7 8 8 6   

Test 7 6 7 8   

Additionally, the seasonality influence is separately 
investigated via the two simple functions of 
cos(2∙π∙d/daysyear) and sin(2∙π∙d/daysyear) (Hippert et 
al.,2001), which constitute the 99th ANN in Table 1. These 
functions appear to be important as input variables since 
they reflect a correlation coefficient much greater than any 
other associated to temperature input that reaches the 

value of 0.448. The annual periodicity can be described 
easily by the two aforementioned functions. In case of the 
week periodicity it can be used either cos(2∙π∙d/7) and 
sin(2∙π∙d/7), or 7 binary digits (1000000 for Monday, 
0100000 for Tuesday, etc.). The binary code cannot be used 
for a year practically. 



 

 4th stage – Combination of input variables sets 
From the previous step the sets of flows {Q(t-1) , Q(t-2), 
Q(t-3), Q(t-4)}, precipitation {P(t) , P(t-1), P(t-2), P(t-3)}, 
temperature {Τ(t) , Τ(t-1), Τ(t-2), Τ(t-3)}, and seasonality 
{cos(2∙π∙d/daysyear), sin(2∙π∙d/daysyear)} have been defined.  
Thus 11 new ANNs are constructed which are presented in 
Table 4 (with serial number from 100 to 110). The available 
sets and optimization processes are repeated. In the 
present stage, the crucial parameters of the ANNs are same 
with those of the 3nd stage with the difference that the 
number of neurons of the hidden layer ranges from 1 to 40 
with incremental step 1. After the training and calibration 
of the parameters of ANNs the various statistical indices 
are determined. Table 5 portrays key metrics of the finally 
created model 110.  

In order to investigate the effectiveness of the proposed 
methodology and the input selection process, the 

produced best ANN versions (108, 109 and 110) were 
compared on the same datasets with two other methods. 
Initially, a simple auto-regressive (AR) model was selected 
for comparison purposes, since this method represents a 
candidate that creates simple and fast models. Due to the 
fact that autocorrelation appears to be significant in the 
available data, as it appears in Step 1 of the methodology, 
9 previous values of Q were used to construct the model. 
Matlab’s ar command was used to create the model with 
default settings (Forward-backward approach that 
minimizes the sum of a least- squares criterion for a 
forward model, and the analogous criterion for a time-
reversed model). 

A(q)y(t) = e(t)  where A(q) = 1 - 0.7112 q(t-1) + 0.08531q(t-
2) - 0.07419 q(t-3) - 0.09355q(t-4) + 0.009828 q(t-5) - 
0.01135 q(t-6) - 0.07566 q(t-7) + 0.04437 q(t-8) - 0.08749 
q(t-9)

Table 4. ANNs combinations and construction for 4th stage of proposed methodology – Final Selection  

No. 

combination 

No. 

ANN 

Participation of 

flow set 

Participation of 

precipitation set 

Participation of 

temperature set 

Participation of 

seasonality 

functions set 

Population of 

input variables 

1 99 No No No Yes 2 

2 95 No No Yes No 4 

3 100 No No Yes Yes 6 

4 80 No Yes No No 4 

5 101 No Yes No Yes 6 

6 102 No Yes Yes No 8 

7 103 No Yes Yes Yes 10 

8 65 Yes No No No 4 

9 104 Yes No No Yes 6 

10 105 Yes No Yes No 8 

11 106 Yes No Yes Yes 10 

12 107 Yes Yes No No 8 

13 108 Yes Yes No Yes 10 

14 109 Yes Yes Yes No 12 

15 110 Yes Yes Yes Yes 14 

Table 5. Statistical Indices Of The Proposed ANN With Input Variables {Q(T-1) , Q(T-2), Q(T-3), Q(T-4), P(T) , P(T-1), P(T-2), 
P(T-3), Τ(T) , Τ(T-1), Τ(T-2), Τ(T-3),  Cos(2∙Π∙D/Daysyear), Sin(2∙Π∙D/Daysyear)} –Model 110 

Statistical index Training set Evaluation set Test set 

RMSE 17,731 19,579 13,075 

r 0,845 0,820 0,884 

MAPE 33,751 33,493 39,499 

MPE 0,456 4,747 2,421 

VE -0,117 0,667 -0,964 

ME 0,381 -2,197 3,634 

MF -41,954 -51,213 -42,869 

NMBE -0,004 0,022 -0,036 

NRMBE 0,756 0,765 0,924 

E 0,714 0,67 0,772 

E1 0,676 0,67 0,683 

TS1% 3,79 3,56 2,33 

TS2% 15,89 15,53 13,62 

TS5% 29,91 28,31 25,96 

TS25% 55,80 55,16 49,91 

TS50% 79,61 80,27 77,79 

TS100% 95,32 95,80 92,78 



 

The second method used to compare the presented 
approach is the creation of time series specialized ANNs, 
based on series-parallel implementation. The models of 
this kind take as input the previous values (potentially 
multiple time steps) of the flow Q, and they have the 
capability to take also exogenous inputs. In the specific 
case, only the time delay of the output was used as 
predictor, assuming that the influence of the other factors 
is already depicted in the Q value or in past historical 
patterns of the latter. This method was selected since it 
represents a more complex one than AR, but less-complex 
than the proposed one, exploiting only a single aspect of 
the data in the tradeoff of simplicity. For the 
implementation, the newnarxsp function of Matlab NN 
Toolbox was used. The dataset followed the already 
mentioned division of the previous two approaches, in 
order to compare the methods on the same final test set. 
The model parameters (types and number of neurons, 
training functions etc.) were optimized based on a Genetic 
Algorithm, following the defined methodology in 
(Kousiouris et al., 2012), adapted in the given dataset. A 
number of training functions were investigated from the 
available Matlab implementations and was concluded that 
the trainbr case (based on Bayesian regularization training) 
was the most beneficial case. This option was used in the 
main execution of the GA optimization process of the 
compared method. Options for the activation functions of 
the neurons included “tansig','logsig','purelin' and 'radbas' 
functions. The number of generations was set to 50 and the 
population size to 30, resulting in 1500 different ANNs 
being examined. Elite count was set to 2 and crossover at 
0.8, with the GA returning the MSE on the training error as 
the evolutionary fitness criterion, which had proved more 
efficient in past experiments. During each loop, an ANN is 
saved only if its MSE on the intermediate evaluation set 
error is less than the current best one. The ANN with this 
best metric is selected directly in the end and it’s cross-
validated in the final 30% of the initial dataset that has not 
been used up to this point (test set).  

The compared results in the training and evaluation set of 
the three approaches appear in Table 6, based on the 
metrics identified in (Dawson, 2002), on the final test set. 
The key metrics for comparison were RMSE (Root Mean 
Square Error) for insights in the high flows, MSRE (mean 
squared relative error) for insights in the low level flows, 
MAPE (Mean Absolute Percentage Error) as a general 
indicator, E and the Akaike information criterion (AIC) for 
investigation of model complexity. Any combination of the 
11 indices used in the study may be used, of course 
affecting the final selection of the best model. The 
particular ones were selected given that they cover a range 
of features, from complexity to extremes identification 
(low or high flows), which is considered more critical from 
a hydrological point of view (e.g. predicting low flows that 
can lead to water shortage or optimal hydroplant operation 
to high flows indicating imminent flooding). From the 
comparison it is obvious that the proposed input selection 
method produces enhanced models in comparison to the 
other approaches (AR and GA-ANN model), especially in 
critical criteria such as the RMSE, which indicates the high 
level influence. This is considered more critical since it is 
able to better detect cases of increased flow, where 
corrective actions may be more necessary for mitigating 
flow peaks. On the other hand, the AR model portrays an 
enhanced overall behavior (as indicated by the enhanced 
MAPE), which however can be attributed to its superior 
performance in the low flow prediction, as also indicated 
by the reduced MSRE. Furthermore it has significantly 
poorer performance in the cases of RMSE and E. It also 
portrays the best performance in AIC, however this is more 
of an indication that it is simpler to build. The GA-ANN 
model seems to predict mainly underestimated values, 
thus leading to increased risk.   For the final selection, given 
that each version (108, 109 or 110) may indicate better 
performance in a specific subgroup of the overall error 
criteria when compared to each other, the final candidate 
may be chosen based on a specific criterion that is 
considered as more important than the others. Based on 
the aforementioned analysis, model 110 prevails (in terms 
of RMSE and E).

Table 6. Comparative results on the test (validation) set on different metrics 

Model 
MAPE E AIC RMSE MSRE 

Model 108 28,448 0,763 11431 13,348 0.357 

Model 109 52,093 0,739 11651 13,994 0.986 

Model 110 39,499 0,772 11433 13,075 0.611 

GA-ANN 38.058 0.600 12482 17.331 0.348 

AR Model 18.028 0.622 6652 16.837 0.268 

4. Conclusions 

Recently, several methods have more or less efficiently 
dealt with the selection of input variables to artificial neural 
network (ANN) models in the hydrology and water 
resources domain. While the ultimate purpose is to 
approximate an effective method accounting for non linear 

input variables to ANN models, very few approaches could 
reach this target. Moreover, none of these has considered 
as inputs precipitation and temperature coupled with 
atmospheric circulation patterns describing the variability 
of wet/dry and warm/cold weather influencing the river 
flows. In addition, none methodology has considered the 



 

inherent seasonality of precipitation and temperature as 
input variable to ANN models. The seasonality had only 
been considered as wavelet transform for space–time pre-
processing of satellite or ground station precipitation, 
evaporation, and runoff data in neural network of rainfall–
runoff modeling. To this regard, the proposed 
methodology for selection of input variables involved to 
ANN models for river flow forecasting taking into 
consideration variables linked to atmospheric circulation 
and seasonality is multi-stage taking into account: 

• The stepwise limitation of the input variables 
under selection allowing the non linear correlation 
between each input variable and the flow under 
forecasting by using the ANN. In this way, 110 
different cases of ANN models have been 
examined instead of 17,640 potential cases. 

•  Simulation of annual seasonality through an 
appropriate pair of sine and cosine functions. 

A set of hydrology criteria including RMSE, r, MAPE, MPE, 
VE, ME, MF, NMBE, NRMBE, E, and E1, was used through 
the technique of voting analysis. Each criterion served a 
specific purpose for the model selection. For example, the 
TS and MPE statistics measured the effectiveness of the 
model to accurately predict the data. The statistics r, E, 
NMBE, and NRMBE quantified the efficiency of the model 
in capturing the complex, dynamic and nonlinear 
precipitation- river flow process, while the global error 
statistics such as r, E, and NRMBE accounted for high flows 
due to involvement of square of the difference between 
observed and forecasted flows. The proposed 
methodology revealed as robust input variables the river 
flow of past 4 days, the precipitation of past 3 days and the 
seasonality. Its superiority has been proven by the 
comparison with GA-based ANN and AR- models, two 
methodologies that were selected following tradeoffs in 
the simplicity and time needed to create the models. 
Comparison on a critical subset of the criteria has indicated 
that the final model created by the proposed methodology 
portrays significant advantages especially in the more risky 
cases of high data flows and the increased need for their 
prediction to timely identify flooding phenomena. The 
latter may be attributed to the prevailing wet and warm 
circulation patterns at 700 hPa geo-potential heights 
influencing the river flows of the study catchment 
(Panagoulia et al., 2006a). In future work different kinds of 
training ANNs techniques will be applied for the results 
improvement, while different catchments river flows can 
be tested for generalization purposes. One limitation of the 
work is the training time needed for the investigation of 
e.g. 110 models in the main methodology used. However 
the model is trained once and may be used on a daily basis 
for the forecasts. Retraining may also be performed in the 
future in case of new data arrivals that indicate a difference 
in patterns, which is expected to be a rare occasion. 
Furthermore, parallel computational implementations of 
ANNs (e.g. like Apache Mahout or Spark ML) may be used 
in order to speed up the ANN investigation and training 
process. 
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