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ABSTRACT

The problem of the passive contaminant spreading in a steady viscous fluid stream is discussed while the
admixture’s dissipation and diffusion are taken into account. The channel is assumed to be a horizontal
plane, curvilinear and quite lengthy, so that the ratio of the stream width to its length can be regarded as
a small parameter. A mathematical model of the process derived by the small parameter technique from
the 2D steady Navier-Stokes equations for incompressible viscous fluid and non-steady convection-diffu-
sion equation of a substance in the moving medium is introduced. A finite element method is applied for

numerical study of the proposed model and results of computer experiments are presented.

INTRODUCTION

The mathematical models of the contaminant
spreading in the natural streams are an important
part of the water ecology simulation (Chatwin
and Allen, 1985). They are widely used for the
surface water quality control. For simulations of
regional scale, the so-called ‘camera’ models are
widely used. The region is divided into relatively
homogenous sub-regions (cameras); characteris-
tics are averaged and considered to be constant
inside each camera. The boundary balance rela-
tions describes the interaction among the cam-
eras. However, in some cases the intracamera
processes are of interest and this requires the
application of more detailed ‘distributed” models
(Chatwin and Allen, 1985).

Usually in water ecology problems these ‘distrib-
uted’ models are restricted to consider the passive
admixture, i.e. varying of the contaminant con-
centration is assumed not to affect the hydrody-

namic part of the model - velocity and pressure
fields. The approach allows to split the problem in
two; the first one is to determine the flow velocity
field and the second problem is to obtain the
admixture concentration in a flow with this known
velocity field.

One peculiarity of the river ecosystems is the con-
siderable length of the channel and its relatively
small width. The theoretical analysis of the
admixture spreading in the lengthy stream of vis-
cous fluid was initiated by Taylor (1953, 1954) and
Aris (1956). The term ‘Taylor dispersion’ is now
being widely used in literature, to identify this
problem (Monin and Yaglom, 1979; Kotorynski
1994; Rosencrans 1997).

In the modelling of the contaminant propagation
in the viscous flow, it is necessary to solve the
Navier-Stokes and the convection-diffusion equa-
tions in a coupled manner. Because of the com-
plexity and the non-linear character of this system,
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the reduced models of the admixture spreading are
of special interest (Chatwin and Allen, 1985;
Rosencrans, 1997). Usually the velocity fields in the
reduced models are determined on the basis of
experimental data, semi-empirical equations, aver-
aged-value or analytical representations. When
constructing the reduced models of admixture
spreading in reservoirs, it is usual to average the
concentration field in one or two spatial variables.
Because of the small ratio of the channel stream
width to its length, it is possible to apply various
small parameter techniques (Babayan, 1997; Fife,
1975; Kotorynski, 1994; Nadolin, 1997). This
approach allows reducing the original system of
differential equations by excluding terms, which
are not essential for flows of this shape. Usually,
equations of the first approximations take into
account only longitudal convection and diffusion.
This is justified when the transversal diffusion is
not significant. Nevertheless, in some cases (in
river streams, for instance) it is not true (Fischer,
1969; Yotsukura and Sayre, 1976).

With the current work, we introduce the model of
the non-conservative passive contaminant spread-
ing in 2D lengthy stream channel, using the tech-
nique of Nadolin, Botchev and Nicolayev (1997).
The starting point of the derivation is the Navier-
Stokes equations for the 2D stationary incom-
pressible viscous flow and the time-dependent dif-
fusion equation of a substance in the moving aver-
age. As a result, for each unknown parameter, it
gives an initial boundary-value problem in terms
of the unknown’s expansion with respect to the
small parameter - the ratio of the stream width to
its length. Since the admixture is assumed to be
passive, we calculate the unknown velocity and
the pressure fields. The remaining equation for
the concentration has to be solved numerically.
The particular feature of the model is taking into
account the stream cross-structure that allows
studying the contaminant spreading in a channel
with varying width.

PROBLEM FORMULATION

Consider a non-conservative admixture spreading
in a 2D steady stream with known boundaries. A
rectangular Cartesian coordinate system is adopt-
ed, so that the medium line of the channel begins
at the center of the coordinate system. The
boundaries of the stream are assumed to be given
as y=f(x) £h(x), where f(x) and h(x) are known
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Figure 1. Disposition of the coordinate system.

functions.

Here, f(x) defines the middle line of the channel and
h(x) defines the half-width one. We will consider the
flow section 0<x <L, where L>> max A(x). Note

xefo,L]

that f(0)=0, because of the selected coordinate sys-
tem. The governing equations for the admixture
spreading in the 2D steady viscous fluid stream,
which take into account diffusion and decay, are:
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The unknown functions are u=u(xy), v=v(xy),
and c=c(x, y,¢). They respectively denote the longi-
tudinal and transverse components of the fluid
velocity vector, the pressure and the concentration
of the admixture. Furthermore, ¢ is the constant
density of the fluid, u« is the turbulent viscosity coef-
ficient, Q is the known water discharge at the sec-
tion entry. Next, D is the turbulent diffusion coeffi-
cient and y is the coefficient of the substance decay.
Finally, the functions a(x,y) and b(x, y) set the ini-
tial contaminant distribution and the matter enter-
ing from the inlet section x=0, respectively.

The admixture is passive, so the liquid density, vis-
cosity and velocity are independent from the sub-
stance concentration, the system of equations (1)-
(9) can be split in two parts. First, we solve the
equations (1)-(5) to find the velocity field (u(x, y),
v(x, y)) and pressure p(x, y). Then we solve equa-
tions (6)-(9) with known velocity and pressure to
find the concentration c(x, y, ¢).

CONVERSION TO DIMENSIONLESS VARIABLES
There are two spatial characteristic scales in the
model, the length L, for the x-direction and the
width H=h(0), for the y-direction. They result
from the problem when L>>H . Therefore, we
introduce the parameter ¢ = H/L and make use of
the method proposed by Nadolin, Botchev and
Nicolayev (1997).
Two velocity scales are used: U=Q/(Hp), for the
longitudal velocity and V’=¢U for the transversal
one. P=pU2L/H will be taken as the pressure
scale, T=L/U as the time scale and C=max a(x,y)
Xy
as the scale for the concentration. Thus, new dimen-
sionless variables are introduced by formulae:

Xx=LX; y= Hy, t= Tt u= Uy v Wy
p=Pp ¢c=C; & Ca b= Cb
f = Hf; h= Hh.
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After substitution of the above variables, equa-
tions (1)-(9) may be written out as follows (mark
‘0 is omitted):
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The dimensionless parameters, the Reynolds
number Re, the diffusion Peclet number Pe and
the dissipation parameter A are defined as follows:
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u D

EQUATIONS OF MATHEMATICAL MODEL

Equations (10) - (18) are solved, by substituting

the asymptotic e-power expansion into the system

and gathering the terms that do not contain the ¢

yield:
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Equations (20)-(27) will be referred as the initial
approximation or the base mathematical model.
For the terms containing the first power of ¢ we
have:
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Equations (28)-(35) constitute the correcting sys-
tem.

CONSIDERING OF THE BASE MODEL

For the hydro-dynamical subsystem, equ. (20)-
(24) of the base model, an analytical solution can
be obtained in the same way as for a long pipe
(Kotorynski, 1994):
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For the straight channel, of constant width (f(x) =
0 and A(x)=1), the velocity transversal compo-
nent (37) is equal to zero and formula (36) for the
longitudal velocity gives the Poiseuille flow in
pipe with a constant section.

Let us consider the base model equations, for the
concentration given by equ. (25)-(27). To get a
numerical solution, the flow domain is reduced to
a rectangle by the substitution:

X - X% Y- (y- () K3 (39)
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For the new variables, the following initial-
boundary value problem occurs, and it is solved
numerically:
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STUDY OF THE CORRECTING SYSTEM

The analytical solution for the hydro-dynamical
subsystem of equations (28)-(32) of the correcting
system can be found after substitution of equa-
tions (36)-(38) into (28)-(32):
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For a channel of uniform width, (h(x)=1 and
h’(x) = 0), the correction to velocity base field will
be equal to zero.

For obtaining a correction after the change of
variables (39) we have:
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The right part of the equation (18) is determined
after solving the system (41)-(44). We note that
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for a channel of uniform width the system (48)-
(52) has a trivial solution c;(x, y, t)=0.

NUMERICAL TESTS

We have made a series of numerical experiments
on the basis of the proposed mathematical model.
The propagation of a contaminant spot is exam-
ined. The initial and boundary conditions are
determined by the functions:

a(xy) =

Cpex]

L= st =0 69
0, |x—)g|>|

The parameter [, where 0</<<I, characterizes
the variation of a spot concentration across the
longitudinal coordinate, and the parameter deter-
mines a position of the spot’s centerline (Fig. 2).

1.0

0 xol T oxH] X

Figure 2. The initial distribution of contaminant
(constant in y-direction)

The values [=0.09, x.=0.12 were used for all cal-
culations. The computational domain was 0 <x <
1.2;-1<y<1.

Equations (41)-(44) and (48)-(52) were solved

REFERENCES

A. BABAYAN and K. NADOLIN

using a coupled finite element method and a finite
difference method with bilinear rectangular ele-
ments in space and with Crank-Nicolson scheme
in time.

We have carefully studied the influence of the
parameter Pe on the spot spreading. The value of
parameter A was 0.01 in all calculations. The
results of numerical experiments are presented at
the Fig. 3. The contaminant distribution is shown
for different Pe at the final time ¢ = /. The chan-
nel shape is y= *=(1+0.1sin 12x), in dimension-
less variables.

1 0,750 0.500

0.250 1]

Figure 3. The concentration distribution for various
values of Pe.

CONCLUSIONS

In the present work, we introduced a distributed
model for the advection process of a substance in a
lengthy curvilinear channel (or river) 2D stream. A
nice feature of the model is its simplicity: the hydro-
dynamical part of the model turns out to be inte-
grable analytically, so that the problem is reduced
to the non-steady truncated convection-diffusion
problem. The model can be used as a part of the
more comprehensive ecosystem models.

Aris, R. (1956), On the dispersion of solute in a fluid flowing through a tube, Proc. Roy. Soc. London Ser. A,

235, 67-77.

Babayan, A.V. and Nadolin, K.A. (1997), Modelling contaminant spreading in 2D plane steady channel flow, In:
Proceedings of VII All-Russian Conference "Modern problems in mathematical modelling", Novorossiysk,

Rostov-on-Don State University, 15-21.

Chatwin, P.C. and Allen, C.M. (1985), Mathematical models of dispersion in rivers and estuaries, Ann. Rev.

Fluid Mech. 17, 319-349.

Fife, P.C. and Nicholes, K.R. (1975), Dispersion in flow through small tubes, Proc. Roy. Soc. London Ser. A, 344,

131-145.



SIMULATION OF THE ADMIXTURE SPREADING 97

Fisher, H.B. (1969), The effect of bends on dispersion in streams, Water Resource Research, 5, 496-506.

Kotorynski, W.P. (1994), Dispersion in pipes with slowly varying cross section, SIAM J. Math. Anal. 25, 915-940.

Monin, A.S. and Yaglom, A.M. (1979), Statistical fluid mechanics, Vol. 1 Cambridge (Mass., USA), MIT Press.

Nadolin, K.A., Botchev, M.A. and Nicolayev, .A. (1998), Substance Advection by a Steady 2D Stream of the
Viscous Fluid in a Lengthy Free-Surfaced Canal, In: Proceedings of the 2nd Int. Symp. on Turbulence,
Heat and Mass Transfer, June 9-12, 1997, Delft, Netherlands, 409-418.

Rosencrans, S. (1997), Taylor dispersion in curved channels, SIAM J. Appl. Math. 57, 1216-1241.

Taylor, G.I. (1953), Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. Roy. Soc.
London Ser. A, 219, 186-203.

Taylor, G.I. (1954), The dispersion of matter in turbulent flow through a pipe, Proc. Roy. Soc. London Ser. A,
223, 446-468.

Yotsukura, N. and Sayre, W.W. (1976), Transverse moving in natural channels, Water Resources Research, 12,
695-704.



