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ABSTRACT 
The present study deals with the problem of soil contamination risk assessment for a region being 
actively impact by the routine production of Kremikovtzi metallurgical plant near Sofia, Bulgaria. 
Although the production is now cancelled, the soil pollution is present and needs careful 
assessment. The application of self-organizing maps classification strategy of Kohonen makes it 
possible to identify: a/ pollution sources in the region of interest; b/ spatial patterns of similarity of 
polluted sites and the reason for the specific pollution. 
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1. INTRODUCTION 
The anthropogenic activity is one of the main reasons for soil pollution. Especially high loads are due 
to contamination by heavy metals whose sources are mainly metallurgical plants, urban heating 
processes, agricultural treatment of land etc. The polluting emissions are mainly fixed in the upper 
soil zone and even after a partial remobilization of the heavy metals it could bring to groundwater 
contamination, increased input to agricultural plants and, thus, harmful effects in the human food 
chain. 
The traditional assessment of soil pollution is based on the regular routine of comparison of 
allowable threshold values with the results of monitoring. This approach is even a required action in 
environmental agencies, agricultural administration and managing organization. Very often solving a 
particular problem concerning the soil pollution or respective decision making is based solely on 
single results and not on a more generalized model about the state of the soil pollution in a certain 
region. The application of multivariate statistical approaches to the problem allows a better 
classification, modeling and interpretation of the soil monitoring data. This environmetric strategy 
makes it possible to detect relationships between the chemical pollutants and specific soil 
parameters, between sampling sites and, therefore, to achieve a stratification of the pollution. 
Further, it becomes possible to identify possible pollution sources and to construct apportioning 
models allowing the determination of the contribution of each identified source to the formation of the 
total pollutant mass (Stanimirova et al., 2006; Einax and Soldt, 1995; Singh et al., 2008; Andrade et 
al., 2007; Buszewski and Kowalkowski, 2006; Kemper and Sommer, 2002; Lee et al., 2004; 
Stanimirova et al., 2009; Terrado et al., 2007; Perez Pavon et al., 2008). The careful exploratory 
data analysis of polluted soil samples proves to be an important tool to assess the soil quality in 
endangered regions. Various approaches are usually applied in order to collect sufficient information 
from the monitoring results in order to interpret and model the data sets. This approach is, indeed, 
an advanced assessment procedure, which is very effective for seriously polluted region. In such 
cases the simple interpretation of the monitoring results involving only standard comparison of 
registered heavy metals concentrations with accepted as hazardous threshold values, does not 
allow a real data interpretation. The pollution process is, in principle, a multivariate one and only 
multivariate data treatment is appropriate for assessment activities.  
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In the last decades of the 20th century the annual production in the Kremikovtzi steelwork near City 
of Sofia, capital of in Bulgaria was about 1 million tons of steel. In addition, alloys and inorganic 
compounds, like lime, barite, and dolomite were produced. In recent investigations only the vertical 
distribution of some elements in different soil types was in focus (Schulin et al., 2007). Recently, a 
geostatistical data interpretation of the heavy metals data set was published trying to localize the soil 
pollution status quo (Schaefer et al., 2010). It is the aim of the present study to perform a 
multivariate statistical treatment of another data set of heavy metals collected on the polluted 
Kremikovtzi soils in order to detect additional details of the data set structure by the use of self-
organizing maps of Kohonen (SOM) technique. This study improves the pollution assessment 
around the factory using 65 samples from the region inside and outside of the metallurgical plant. 
 
2. METHODS 
2.1 Investigation area, soil sampling, preparation, and analysis 
The steelwork Kremikovtzi is located about 20 km in the north east of the Bulgarian capital Sofia. For 
this investigation 62 samples were taken in an area of about 64 km2. 16 sampling points are located 
directly in the boundaries of the steelwork (Figure 1). 
 

 
Figure 1. Sampling point location 

 
Soil samples from the upper 0- to 20-cm layer were taken. The soil samples were dried, 
homogenized, and passed through a 2-mm-sieve. A microwave (power: 1200 W) aqua regia 
digestion with a mixture of 21 mL HCl (c = 12 mol L-1) and 7 mL HNO3 (c = 15.8 mol L-1) according to 
the German standard (DIN EN 13346, 2001) was performed with 0.5 g of the soil twice for each 
sampling site. After cooling, the solutions were completed to 100 mL with diluted HNO3 (c = 0.5 mol L-1). 
Afterwards, the concentration of Cd, Cu, Fe, Mg, Mn, Na, Pb, and Zn was determined by means of 
different atomic spectroscopic techniques. All examined metals could be detected in concentrations 
higher than the detection limits. The trueness of the analytical methods was verified by analyzing 
certified reference material IAEA/Soil-7.  
In Table 1 the basic statistics of the analytical results is presented (mean values, maximal and 
minimal value, standard deviation). 
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Table 1. Basic statistics of the monitoring results 
Analyte Cd Cu Fe Mg Mn Na Pb Zn 
Mean 1.2 86.3 58.7 5.0 4.3 315.4 318.3 237.7
Max 0.2 34.9 22.0 1.4 0.6 112.9 39.3 64.5
Min 6.1 291.6 301.2 13.1 15.4 1420.2 1624.8 1672.4
St. Dev. 1.0 56.4 47.7 2.8 3.9 214.4 348.0 255.8

 
2.2 Chemometric Approach 
The SOM is an algorithm (Kohonen, 2001) used to visualize and interpret large high-dimensional 
data sets; it is an unsupervised pattern cognition method similar to cluster analysis. The main 
advantage of SOM is the simultaneous classification of variables and objects (sampling locations). 
Typical applications are visualizations of process states or financial results by representing the 
central dependencies within the data on the map. The map consists of a regular grid of processing 
units called neurons. 
A model of some multidimensional observations, possibly a vector consisting of features (variables), 
is associated with each unit. The map attempts to represent all available observations with optimal 
accuracy using a restricted set of models. At the same time the models become ordered on the grid 
so that similar models are close to each other and dissimilar models far from each other. Fitting of 
the model vectors is usually carried out by a sequential regression process, where t = 1,2,... is the 
step index. For each sample x(t), the winner index c (best matching unit - BMU) is first identified by 
the condition: 
 

)()()()(, tmtxtmtxi ic −≤−∀                (1) 

where i is the node indication and m  is node vector. 
When the BMU has been found, the weight vectors of the SOM are updated so that the BMU is 
moved closer to the input vector in the input space. 
Then, all the model vectors or a subset of them belonging to the nodes centered around node c = 
c(x) are updated as: 
 

))()(()()1( ),( tmtxhtmtm iixcii −+=+ .                   (2) 
 
Here, hc(x),i is the “neighborhood function”, a decreasing function of the distance between the i-th  and 
c-th nodes on the map grid. This regression is usually reiterated over the available objects.  
The trained map can be graphically presented by 2D planes for each variable, with the variable 
distribution values being indicated by different colors on the different regions of the map. 
Additionally, the node “coordinates” (vectors) can be clustered by the non-hierarchical K-means 
classification algorithm. Throughout the calculations a software package for MATLAB was used. 
 
3. RESULTS AND DISCUSSION 
In Figure 2 SOMs for all parameters of interest and all sampling sites are presented. The color scale 
at the right site of the map indicates the concentration levels for the heavy metals analyzed at each 
sampling location (Cd and Cu are in µg g-1, the rest in mg g-1). It is readily seen that three specific 
patterns of heavy metals distribution are formed for the sampling area of interest. The first pattern 
resembles the similarity of the SOMs for Cd, Cu, Fe, Pb and Zn. This is an important indication 
about the role of a specific source of these metals in the polluted soils, obviously the major 
metallurgical activity – production of iron and steel in the time of highest production activity of the 
plant.  
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Figure 2. SOMs for all pollutants and all sampling points 

 
In this case the highest metal concentrations are found in the right bottom corner of the maps. It 
describes the specific locations polluted with the metals mentioned and by the source discussed. 
The second pattern consists of the maps for sodium and magnesium, which indicate enhanced 
metal concentrations on the left bottom corner of the maps. Obviously, the specificity in this case is 
related to the effect of another source of pollution (dolomite production) causing higher metal impact 
in another location around the metallurgical plant. 
Except for these two basic soil pollution sources, another pattern of pollution could be detected if the 
third SOM pattern is interpreted. It includes only one map (that of manganese) characterized by 
increased concentrations of the metal both on left and right botton corner of the SOM. Thie particular 
area, therefore, indicates a mixed type of soil pollution caused by the simultaneous impact of the 
“metallurgical” and “dolomite” source.  
Figure 3 represents the typical component plane plot where the similar patterns of maps are grouped 
in clusters of similarity. This figure proves completely the interpretation performed by the separate 
maps. 
 

Table 2. Average values and standard deviations for the chemical parameters for each cluster 
Variables Average 

values 
Standard 
deviations 

Element Unit 1 
(n=48) 

2 
(n=9) 

3 
(n=2) 

4 
(n=3) 

1 
(n=48) 

2 
(n=9) 

3 
(n=2) 

4 
(n=3) 

Cd  µg g-1 0.79 1.92 2.52 4.27 0.49 0.46 0.59 1.95 
Cu µg g-1 62.56 165.74 79.26 232.03 21.31 46.60 17.58 51.69 
Fe mg g-1 40.62 105.81 40.35 218.72 9.57 33.90 5.94 73.58 
Mg mg g-1 4.16 7.53 10.30 6.87 2.24 2.51 1.47 2.46 
Mn mg g-1 2.50 8.82 13.46 14.24 1.35 2.21 1.64 1.42 
Na µg g-1 257.80 380.97 1328.29 365.73 92.62 107.40 129.98 106.95 
Pb µg g-1 181.56 662.25 241.67 1524.47 98.83 251.98 40.83 91.17 
Zn µg g-1 159.09 369.48 327.25 1040.53 116.99 90.00 193.79 646.44 

 
In the next step of data interpretation an effort was made to separate the sampling locations into 
groups of similarity using SOMs. In Figure 4 the sample sites grouping into four clusters and the 
number of hits into each node of the map are presented.  
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The first cluster is most populated (48 sampling points), in the second one there are 9 objects, in the 
third – 2 and in the fourth – 3 samples.  
It is of substantial importance to determine the discriminator parameters for each one of the clusters 
in order to better understand the data structure and the pollution patterns for the region of interest. In 
Table 2 the averages of the variables and their standard deviations for each one of the clusters 
identified are shown. 
In Table 3 each cluster is characterized by the group median values of each of the pollutants. 
Additionally, Kruskal – Wallis one-way analysis of variance test and Mann-Whitney test is given to 
illustrate the similarities and dissimilarities between clusters formed. It is seen that the different 
patterns are reliably described by several specific features as follows: 
Cluster 1: It is the biggest group of objects. The averages for the pollutants in this case are actually 
gross averages of the other three groups. This is an indication that most of the region of interest has 
a homogeneous type of pollution characterized by relatively high levels but still below the threshold 
of serious pollution. The homogeneity is indicated also by relatively low levels of the relative 
standard deviations for all averages of the pollutants as compared to the deviations in the other 
groups. 
Cluster 2: The lowest levels of cadmium and manganese are found for the rest of the clusters (2, 3 
and 4). Since the average value for sodium is very close to the lowest calculated (for cluster 4), it 
could be assumed that the cluster presents a group of sampling points located in an area not 
affected by the dolomite production (low levels of  sodium and manganese) with moderate impact 
from the metallurgical factor (iron and steel production). 
Cluster 3: This cluster represents a tiny area in the region of the plant indicated by only two, which is 
strongly affected by the dolomite production. It shows highest concentrations for magnesium and 
sodium and lowest concentrations of all other heavy metals whose pollution effect is mostly related 
to the steel and iron production. 
Cluster 4: This is also a small group of sampling points which reveal a completely different pattern as 
compared to that of cluster 3. The limited area in this case is seriously polluted by the activity of the 
steel and iron production (highest averages for the concentrations of Cd, Cu, Fe, Mn, Pb, and Zn), 
lowest concentrations for Na and Mg (dolomite production tracers). 
The classification procedure gives the opportunity to identify typical soil pollution sources in the 
region of interest and to indicate the spatial variety of the pollution. These patterns are presented in 
Fig. 5. 
 

 
 

Figure 3. Components plane configuration 
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Figure 4. Clustering of the sampling sites and the number of hits for each node 

 
Table 3. Statistical assessment of differences between cluster median values of variables (statistical 

level of significance lower than p<0.001 was marked as ‘‘++’’, while lower than p<0.05 as ‘‘+’’) 
Variables Median values Mann-Whitney U test 

Element Unit 1 
(n=48) 

2 
(n=9) 

3 
(n=2) 

4 
(n=3) 

K-W test 1-2 1-3 1-4 2-3 2-4 3-4

Cd µg/g 0.67 1.77 2.52 4.55 ++ ++ + ++    
Cu µg/g 58.88 168.98 76.26 204.93 ++ ++  ++    
Fe mg/g 39.94 108.88 36.15 195.14 ++ ++  ++ + +  
Mg mg/g 3.70 7.68 9.26 6.37 ++ ++ + +    
Mn mg/g 2.09 8.37 12.29 14.72 ++ ++ + ++  +  
Na µg/g 241.12 339.92 1236.38 405.19 ++ ++ +  +   
Pb µg/g 152.83 752.65 241.67 1501.96 ++ ++  ++ + +  
Zn µg/g 126.55 387.54 327.25 1068.78 ++ ++ + ++    

 

 
Figure 5. Soil pollution patterns in the region of interest 
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4. CONCLUSION 
The use of self-organizing maps classification made it possible to project the multivariate soil 
monitoring data set and to determine various ways of grouping of sampling points depending on the 
chemical pollutant concentrations. Thus, a complete scheme of the polluted plant area could be 
constructed indicating both spatial and chemical pollution patterns. This approach works with 
relatively limited number of pollution indicators and sampling points allowing, however, a complete 
description of the hazards caused by the anthropogenic activity. 
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