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ABSTRACT 
Artificial neural networks (ANNs) are being used increasingly to predict water variables. This study 
offers an alternative approach to quantify the relationship between time of chlorination in potable 
water (due to convectional treatment procedure) and chlorination by-products concentration 
(expressed as carbon and bromine) with an ANN model, i.e., capturing non-linear relationships 
among the water quality variables. 
Thus, carbon and bromine concentrations in potable water (the second chosen due to the toxicity of 
brominated trihalomethanes, THMs) were predicted using artificial neural networks (ANNs) based 
mainly on multi-layer perceptrons (MLPs) architecture. The chlorination (detention) time as much as 
58 hours in Athens distributed network, comprised the input variables to the ANNs models. 
Moreover, to develop an ANN model for estimating carbon and bromine, the available data set was 
partitioned into training, validation and test set. In order to reach an optimum amount of hidden 
layers or nodes, different architectures were tested. The quality of the ANN simulations was 
evaluated in terms of the error in the validation sample set for the proper interpretation of the results. 
The calculated sum-squared errors for training, validation and test set were 0.056, 0.039 and 0.060 
respectively for the best model selected.  
Comparison of the results showed that a two-layer feed-forward back propagation ANN model could 
be used as an acceptable model for predicting carbon and bromine contained in potable water 
THMs. 
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1. INTRODUCTION 
Chlorine has been used as a disinfectant agent since the beginning of the nineteenth century. It is 
the most commonly used disinfectant due to its efficiency, low cost and easy application. The use of 
chlorine as an acceptable disinfectant of drinking water has dramatically reduced the incidence of 
waterborne diseases. However, chlorination is incriminated for the formation of series of disinfection 
by-products (DBPs) or chlorination by-products (CBPs), like trihalomethanes (THMs: CHCl3, 
CHBrCl2, CHBr2Cl, and CHBr3), which are characterized as probable or possible human carcinogen 
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(Chowdhury et al., 2009). Thus, the European Union has set a maximum contaminant level (MCL) of 
100 µg L-1 for the sum of these substances (EC Directive, 1998). 
The amount of chlorine added to the water seems to be very important. The dose cannot be very low 
as the residual left is crucial for the water protection along the whole distribution system. On the 
other hand, if the chlorine dose is high, its reactivity with DBP precursors or natural organic matter 
(NOM) can lead to elevated values of by-products. 
The levels of THMs in chlorinated water are also associated with chlorine demand, pH, temperature 
and seasonal variability, chlorine contact time and organic materials or chemical elements 
(Chowdhury et al., 2009; Nikolaou et al. 2002; Bo et al., 2008; Sohn et al., 2006; Ye et al., 2009). 
Their formation is generally known to be increasing because of water high temperature, chlorine 
dosage and levels of dissolved organic carbon (DOC) in raw water (Ye et al., 2009; Nikolaou et al., 
1999). In parallel, the presence of bromide ion seems very significant in THMs formation. Thus, 
THMs’ level during chlorination of raw waters containing bromides was also studied by many 
investigators (Bo et al., 2008; Sohn et al., 2006; Ye et al., 2009; Symons et al., 1993; Heller-
Grossman et al., 1999; Mok et al., 2005), as even at lower bromide concentration, brominated THMs 
can be produced (Bo et al., 2008; Mok et al., 2005). The molar yields of THMs and haloacetic acids 
(HAAs) increases as the initial bromide concentration increases.  Bromide ion in natural waters is 
readily oxidized and incorporated into THMs during chlorination. The formation of THMs shifts to 
more brominated species with increasing bromide concentration (Symons et al., 1993; Hua et al., 
2006). 
However, the determination of THMs concentration in treated water seems to be rather a laborious 
work. Thus, statistical models have been developed in the past for the prediction of THMs or chlorine 
residual concentration. Gibbs et al. (Gibbs et al., 2003) uses linear regression models (LR) and 
multi-layer perceptron (MLPs), to predict chlorine concentrations in Hope Valley water distribution 
system in South Australia. A total of six (6) inputs are included in the models: the water temperature 
at the sites of interest and at the water treatment plant (WTP), the WTP flow 5 days before the 
chlorine measurement being predicted, and the chorine concentrations at the WTP, at the tank inlet 
and at the site under prediction the previous week. Rodriguez et al. (1997) implemented a single 
smoothing factor general regression neural network to predict the chlorine residual in a simple trunk 
main using hourly chlorine measurements. Milot et al. (2002) presents the application of ANNs to 
model THMs occurrence in drinking water. ANNs are compared with other modeling approaches, 
logistic regression and multivariate regression, to predict concentrations of formed THMs with 
variable chlorination conditions. May et al. (2008) investigates the application of the modified Partial 
Mutual Information-based Selection (PMIS) algorithm to the development of ANN models for 
forecasting disinfectant residual within water distribution system. Additionally in a recent work, Ye et 
al. (2011) uses seven inputs for developing a predictive model of THMs and HAAs concentrations. 
More applications are reviewed elsewhere (Chowdhury et al., 2009).  
In this work, assuming pH and temperature fluctuations as negligible, THMs concentrations 
(specifically carbon and bromide content) are predicted, based on the estimated chlorinated time 
(depended on the length of distribution network and the season) in treated water samples of 
Athenian WTP (Acharnes and Aspropyrgos facilities). Multi-layer perceptrons (MLPs) and Radial 
Bases Function (RBF) models are used, evaluated and compared in order to determine the 
parameters that define the best model predicting THMs concentration in chlorinated samples. 

 
2. EXPERIMENTAL/METHODOLOGY 
2.1 Area description  
About three hundreds (295) samples were collected from two WTPs used for the water supply of 
Athens, named Aspropyrgos and Acharnes (Figure 1). Distribution system terminals were also 
sampled during a period from 2004 to 2007. The Athenian Distribution System is operated in such a 
way that very few points have detention time greater than 48 hours.    
The distribution network that starts from Aspropyrgos WTP supplies drinking water up to Salamina 
(an island located 27 km away from the WTP reservoir tank). According to hydraulic data, detention 
time between pre-chlorination and the exit from flocculation tank is 2 hours, sand filtering is about 1 
hour and its storage in reservoir tank is estimated to 12 hours. Chlorine detention time till Salamina 
sampling point is estimated to 27 hours depending on the water outflow.  
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The Acharnes WTP primarily supplies the portion of the distribution network that covers the areas of 
Attica with higher altitudes; however, it also provides supplemental quantities of water to the 
Municipalities of Athens and Piraeus. Its current total water treatment capacity is 800.000 m3 d-1.  

 

 
Figure 1. Acharnes and Aspropyrgos WTPs in Athens 

 
2.2 Samples collection and analysis   
Sample collection was performed in 40 mL sample vials capped with PTFE-faced silica septum. The 
THMs were preserved by the addition of a common dechlorination reagent (sodium sulfite), before 
shipment to the field. All samples were collected in duplicate. The sample bottles should be 
overflowed in order to avoid the formation of air bubbles through the sample. The samples were 
chilled to 4oC on the day of collection and maintained at that temperature until analysis. The samples 
were analyzed within 14 days of collection (there was an attempt to analyze them within 3 days of 
collection so as to prevent the hydrolysis of haloacetonitriles and haloketones and further CHCl3 
formation). 
The method employed for the determination of THMs, was a modification of 551.1 EPA method 
developed by Nikolaou et al. (2001) as it allows to extract them from drinking water quantitatively 
(Cancho and Ventura, 2005). Methyl-t-butyl ether (MTBE) was the primary extraction solvent. A 35 
mL sample aliquot was extracted with 2 mL of MTBE after addition of 2.5 g sodium sulfate. One µL 
of the extract was then injected into a GC (Trace 2000 Thermo-Finnigan gas chromatograph) 
equipped with a fused silica capillary column and electron capture detector (63Ni ECD) for separation 
and analysis. A capillary column AT-1 60 m x 0.25 mm i.d. x 0.25 µm was used. Procedural 
standard calibration was used to quantify analytes. The instrumental parameters used are given in 
Table 1. The method was validated and recoveries and precision figures were obtained for all the 
studied THMs (Table 1). Limits of detection (LOD) and quantification (LOQ) were calculated (Table 
1). The interlaboratory scheme recorded, is a LEAP test purchased from FAPAS in June 2006. 

 
 
 
 
 

Aspropyrgos Acharnes 

ATHENS 
(centre) 
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Table 1. Quality control / validation data and GC instrumental parameters and for the determination 
of THMs in water 

 LODs /LOQs 
(µg L-1) 

QCs recoveriers (%)  
in 10fold concentration of LOD 

(% RSD, n=7) 

z-score 
(interlaboratoty 

scheme) 
    
CHCl3  1.0 / 3.0 98 (4.5) -0.018 
CHBrCl2 0.50 / 1.5 98 (3.5) -1.3 
CHBr2Cl 0.50 / 1.5 102 (4.6) -0.57 
CHBr3 0.50 / 1.5 98 (5.2) -1.6 
    
The procedure for the analysis of THMs was splitless injection at temperature 175°C; Carrier gas: 
helium; Flow rate 2.0 mL min-1.  
Oven conditions: Initial temperature: 37°C for 20 min; Ramp to 0.2°C min-1 up to 39°C; Ramp to 2.3°C 
min-1 up to 100°C. 
Retention time (min): 8.5 for CHCl3, 13.2 for CHBrCl2, 17.6 for CHBr2Cl and 20.6 for CHBr3 

 
2.3 Data pretreatment and calculations 
For the calculation of the detention time, distance and water supply data of the sampling points 
were used. Except this, the season seemed to play an important role, as during summer, water 
consumption (and supply) is increased and thus the detention time is minimum. 
The calculations of carbon and bromine content in THMs for every sample were performed as 
follows:  

[C] = ArC([CHCl3]/MrCHCl3 + [CHCl2Br]/MrCHCl2Br + [CHClBr2]/MrCHClBr2 + [CHBr3]/MrCHBr3) 

[Br] = ArBr([CHCl2Br]/MrCHCl2Br + 2[CHClBr2]/MrCHClBr2 +  3[CHBr3]/MrCHBr3), 

where [C] and [Br] and [CHCl3], [CHCl2Br], [CHClBr2], [CHBr3] are the weight concentrations of 
carbon and bromine and the four individual THMs and Ar, Mr the atomic and molar relative 
masses, respectively. 
Mean values of carbon and bromine content were also calculated for the samples 
corresponding to the same detention time. Thus, twenty-five samples were finally used for the 
construction of the ANNs models. Detention time was ranged from 1.5 to 58.3 hours, while carbon 
and bromine concentrations were fluctuating from 1.5 to 2.4 and 2.7 to 6.4 µg L-1, respectively. 
Samples were randomly divided in three sets: training (12), validation or selection (6) and test (7). 
Training sample set was used for the models’ learning process; validation set was used for an 
independent check of this process and test set evaluated the final predictive ability of the model 
(Farmaki et al., 2010). 
 
2.4 Artificial Neural Networks 
Artificial Neural Networks (ANNs) have seen an explosion of interest over the last two decades and 
have been successfully applied in all fields of analytical chemistry. Inspired from biological systems 
and originated from the perceptron, i.e. a program unit that learns concepts, ANNs are capable of 
gradual learning over time and modeling extremely complex functions. In addition to the traditional 
multivariate chemometric techniques, ANNs are often applied for prediction, clustering, classification, 
modeling of a property, process control, procedural optimization and/or regression of the obtained 
data (Farmaki et al., 2010). However, unlike the traditional model-based methods, ANNs are self-
adaptive data-driven methods: they learn from examples and are capable of capturing relationships, 
even if these are hard to be described or explained (Zhang et al., 1998). Thus, ANNs are appropriate 
for problems that knowledge is hard to be extracted. 
Moreover, ANNs are non-linear models that can generalize efficiently, are noise and fault tolerant 
and their operation is based on less assumptions and restrictions for the data compared to the 
traditional techniques. Theoretically, they can also approximate any function, mainly the MLPs 
(Farmaki et al., 2010). 
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Figure 2. The neuron: the basic processing unit of an ANN model 
 

ANNs receive a number of inputs in the processing units that are called neurons and are capable of:  

1. processing data received from the previous units with the use of weights Wij and an 
activation function f, 

2. sending signals yj to the next ones and 
3. propagating the error received from the next neurons to the previous ones (back-

propagation, BP algorithm). 
Figure 2 summarizes the aforementioned features. 
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time
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Figure 3. Architecture of the final MLP model (1:1-7-2→2) 
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Two famous ANNs techniques were applied in this work as a non-parametric chemometric tool to 
find a regression model for quantifying the relationship between time chlorination in potable water 
and THMs concentration (expressed as carbon and bromine).   
Multi-layer perceptrons (MLPs) trained by the back-propagation algorithm (BP), and Radial Basis 
Function (RBF) models were selected for this work.  
All the calculations and plots were made using Excel 2003 by MicroSoft, and Statistica for Windows, 
Version 7.0 by StatSoft Inc., 2004.  
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Figure 4. Best MLP model: Observed vs predicted values plots (a) for C and (b) for Br 
 

3. RESULTS AND DISCUSSION 
3.1 MLPs models 
Multi-layer perceptrons networks used in this work were optimized through the parameters of the 
number of the hidden units and the hidden layers. The criterion used was the RMS (Root Mean 
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Square) error for the validation sample set. For each trial, different networks were tested. Thus, the 
initial parameters for the model construction are different and independent. 
The number of hidden units was fluctuated from 2 to 9, for one or two layers. Finally, the best model 
chosen succeeded RMS error = 0.056, 0.039 and 0.060 for training, validation and test set, 
respectively. The architecture of the model included seven hidden units in its unique layer (Figure 3). 
The final model MLP 1:1-7-2:2 reflected the number of inputs (1), the number of the neurons in the 
hidden layer (7) and the final outcome prediction (2). Predicted and observed values were also 
compared by the correlation plot (Figure 4). Training, validation and test samples are marked with 
different colors. The performance of the artificial neural networks model was excellent (r = 0.96 and 
0.98 respectively for carbon and bromine concentration). 

 
3.2 RBF models 
RBF models were optimized in terms of the number of units in the hidden layer and the spread of the 
Gaussian function. The criterion used was also the RMS error for the validation sample set. The 
recognition (concerning training samples) and predictive (concerning test samples) ability of these 
models seemed to be lower than the MLPs ones. The best model chosen included six hidden 
neurons in the intermediate layer and succeeded RMS error = 0.074, 0.068 and 0.082 for training, 
validation and test set, respectively (Table 2). 
 

Table 2. Error for the optimized MLP and RBF models 

Error 
Model 

Training Validation Test 
MLP 1:1-7-2:2 0.056 0.039 0.060 
RBF 1:1-6-2:2 0.074 0.068 0.082 

 
4. CONCLUSIONS 
The application of ANNs for the prediction of carbon and bromine concentrations in THMs of potable 
water in WTPs and distribution terminals in Athens was demonstrated. The final optimized MLPs and 
RBF models used only one variable as input: the chlorination time assuming minimum variations in 
the other affecting parameters. The RMS error was used as the evaluation criterion of the models, 
while three samples sets were used (training, validation and test). In particular, the best ANNs model 
(MLPs with one hidden layer) gave 0.056, 0.039 and 0.060 respectively. It has been shown that 
under special circumstances, ANNs modeling approach is suitable for estimating the real carbon and 
bromine concentrations in chlorinated waters. 
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